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Summary. A. Frank (Augmenting graphs to meet edge-connectivity requirements,
SIAM J. on Disc. Math. Vol. 5, No. 1 (1992) 22-53) developed a method to solve
edge-connectivity augmentation problems. His paper has stimulated further research
in a number of directions, including many interesting generalizations.

This paper surveys the current State of the Art on the edge-connectivity aug-
mentation problem. Recent extensions of the problem are presented for undirected
graphs, hypergraphs and more generally for set functions. Shortened proofs are pro-
vided for some of the results. A list of open problems is also presented.

1.1 Introduction

In this paper all graphs and hypergraphs are undirected, directed versions of
the problems will not be treated here. By graphs and hypergraphs we mean
multi-graphs and multi-hypergraphs, that is, parallel edges and parallel hy-
peredges are allowed, however loops are forbidden. All the problems here will
concern edge-connectivity, that is, vertex-connectivity will not be considered.
We have to emphasize immediately that in our problems we may add edges
between adjacent vertices, we may even add parallel edges. We remark that
without these assumptions, that is, when the starting and also the resulting
graph must be simple, the problem is NP-complete [22]. The optimization
problems will always be unweighted, the weighted version of the simplest
problem already being NP-complete [12].

The basic problem: The starting point for introducing edge-connectivity
problems is the problem of increasing the reliability of a telephone network.
We may associate a graph to the network: the telephone centers and the con-
nections between them are the vertices and the edges of the graph and the

⋆ Some part of this work was done while the author was visiting the Research
Institute for Discrete Mathematics, University of Bonn, Lennéstrasse 2, 53113.
Bonn, Germany by an Alexander von Humboldt fellowship.
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reliability of the network corresponds to the edge-connectivity of this graph.
As a natural requirement, we may wish to increase the reliability of the net-
work by constructing new connections between the centers. The optimization
problem in the language of graphs is the global edge-connectivity augmen-
tation problem in graphs, namely: Given a graph G = (V,E) and a positive
integer k, what is the minimum number γ of new edges whose addition results
in a k-edge-connected graph? We show how to solve this problem, in doing so
we introduce the key ideas to be applied throughout this paper.

The lower bound: First we provide a lower bound on γ. Suppose that G
is not k-edge-connected. This is because there is a set X of degree d(X) less
than k. Then the deficiency of X is k − d(X), that is, we must add at least
k − d(X) edges between X and V − X. Let {X1, . . . ,Xl} be a subpartition
of V . The deficiency of this subpartition is the sum of the deficiencies of the
Xi’s. By adding a new edge we may decrease the deficiency of at most two
Xi’s so we may decrease the deficiency of the subpartition by at most two,
hence we obtain the following lower bound:

γ ≥ α := ⌈half of the maximum deficiency of a subpartition of V ⌉. (1.1)

The minimax theorem (see Theorem 3), due to Watanabe and Nakamura [36],
saying that this lower bound can always be achieved, can be proved as follows:

Frank’s algorithm: (1) Minimal extension: First, add a new vertex s to G
and connect it to each vertex of G by k edges. The resulting graph is k-edge-
connected in V . Secondly, delete as many new edges as possible preserving
k-edge-connectivity in V . The graph obtained is denoted by G′ = (V, F ′). If
the degree of s in G′ is odd, then add an arbitrary new edge incident to s.
Then we have a graph G′′ = (V + s,E ∪F ′′) that is k-edge-connected in V so
that the degree of s is even.

(2) Splitting off: Now we will use the main operation of this paper, called
splitting off. Splitting off a pair of edges sr, st incident to s means that we
delete these two edges and we add a new edge rt. Applying Lovász’s theorem
2(a), split off edge pairs incident to s, preserving k-edge-connectivity in V , as
far as the degree of s becomes zero. This way we obtain a k-edge-connected

graph G∗ = (V,E ∪ F ) with |F | = |F ′′|
2 = ⌈ |F ′|

2 ⌉.

Optimality: The optimality will be proved by the existence of a subpartition
of V whose deficiency provides equality in (1.1). In G′, no edge incident to
s can be deleted without violating k-edge-connectivity in V , so each edge
e ∈ F ′ enters a maximal proper subset Xe in V of degree k, that is, dG(Xe)+
dF ′(Xe) = k. By the submodularity of the degree function d, these sets provide
a subpartition {X1, . . . ,Xl} of V, for which we do have equality in (1.1):

γ ≤ |F | = ⌈
|F ′|

2
⌉ = ⌈

1

2

l∑

1

dF ′(Xi)⌉ = ⌈
1

2

l∑

1

(k − dG(Xi))⌉ ≤ α ≤ γ.
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Minimal extension: The above method of Frank has two main phases: the
first one - minimal extension - consists of the first two steps, while the second
one is the splitting off.

The first phase is in fact the construction of a graph H = (V + s, F ) with
a minimum number of edges such that each edge of H is incident to s and
H covers the deficiency function of G, that is, for every vertex set X ⊂ V ,
the number of edges of H leaving X is at least the deficiency of X in G with
respect to k.

Frank proved in [15] that this can be done not only for the deficiency
function of a graph: such an optimal graph H can be constructed that covers a
symmetric skew-supermodular function. This result (Theorem 1 in this paper)
is not explicitly presented in [15], it was published in [1].

This general result on extension implies that for an edge-connectivity aug-
mentation problem, if the corresponding splitting off exists, then the optimiza-
tion problem can be solved. Thus we will concentrate on splitting off results
in this paper.

Generalizations: The above mentioned basic problem (that is the problem
of augmenting global edge-connectivity of a graph by adding graph edges) and
its solution capture already the most important ingredients of the theory and
they provide a point of departure for studying more complex edge-connectivity
augmentation problems. Lots of generalizations of Watanabe and Nakamura’s
result will be presented here. This paper is divided in three parts: results on
graphs, on hypergraphs and on set functions. The results in the different parts
are intimately related, we will see that a great number of results on graphs
can be generalized for hypergraphs, which in turn can sometimes be further
extended to ”connectivity” functions.

The first part contains the following generalizations in graphs:

• local edge-connectivity augmentation [15],
• global edge-connectivity augmentation over symmetric parity families [32],
• node to area global edge-connectivity augmentation [19],
• global edge-connectivity augmentation by attaching stars [14],
• local edge-connectivity augmentation by attaching stars [24],
• global edge-connectivity augmentation with partition constraint [2].

We present in the second part generalizations in hypergraphs:

• global edge-connectivity augmentation in hypergraphs by adding graph
edges [3],

• global edge-connectivity augmentation in hypergraphs by adding uniform
hyperedges [26],

• local edge-connectivity augmentation in hypergraphs by adding graph
edges (we mention at once that this problem is NP-complete [11]),

• local edge-connectivity augmentation in hypergraphs by adding a hyper-
graph of minimum total size [31].
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The deficiency function with respect to global (resp. local) edge-connectivity
in graphs and in hypergraphs is symmetric and crossing supermodular (resp.
skew-supermodular). The third part is devoted to generalizations on such set
functions:

• covering a symmetric crossing supermodular set function by a graph [6],
• covering a symmetric crossing supermodular set function by a uniform

hypergraph [26],
• covering a symmetric skew-supermodular set function by a graph (this

problem is NP-complete [27]),
• covering a symmetric semi-monotone set function by a graph [20],
• covering a symmetric skew-supermodular set function by a hypergraph of

minimum total size [31].

The main contribution of this paper is to call the reader’s attention to
Theorem 1 of Frank, to survey the results on the edge-connectivity augmen-
tation problem, to provide short proofs for Theorem 12 on detachments sat-
isfying local edge-connectivity requirements, and for Theorem 14 on partition
constrained splitting off preserving global edge-connectivity, and finally, to
present some open problems of the theory.

We finish this introduction by emphasizing that we do not attempt to
cover all topics of the field, e.g. we do not focus on the design of efficient
algorithms, but instead, we concentrate on minimax results of the area.

For further topics, such as Local edge-connectivity augmentation of mixed
graphs, Global edge-connectivity augmentation preserving simplicity, Global
edge-connectivity augmentation in a graph by adding edges within the mem-
bers of a partition, Successive edge-connectivity augmentation, Simultaneous
global edge-connectivity augmentation, we refer to [1], [4], [5], [9], [23].

1.2 Definitions

This section is divided in three parts: definitions on graphs, on hypergraphs
and finally on set functions.

Graph: Let G = (V,E) be a graph. Recall that parallel edges are allowed.
The set of all subpartitions of V will be denoted by S(V ). For a vertex
v ∈ V , Γ (v) denotes the neighbours of v. For X,Y ⊂ V, G/X denotes the
graph obtained from G by contracting X into one vertex, while the resulting
parallal edges are kept, d(X, Y ) (resp. d(X, Y )) denotes the number of edges
between X−Y and Y −X (resp. X∩Y and V −(X∪Y )), d(X)= d(X,V −X).
The set of edges leaving X is called a cut and is denoted by δ(X), that is,
d(X) = |δ(X)|. It is well-known and easy to check that, for all X,Y ⊆ V, (1.2)
and (1.3) are satisfied.



1 Edge-connectivity augmentations of graphs and hypergraphs 5

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X,Y ), (1.2)

d(X) + d(Y ) = d(X − Y ) + d(Y − X) + 2d(X,Y ). (1.3)

The local edge-connectivity between two different vertices x and y of G
is defined by λG(x, y)= min{dG(X) : x ∈ X, y /∈ X}, while λG(x, x) = +∞.
By Menger’s theorem, λG(x, y) is the maximum number of edge disjoint paths
in G between x and y. Let G = (U,E) be a graph. For X ⊂ U, x, y ∈ U − X,
s ∈ U, u, v ∈ U − s we have

λG/X(x, y) ≥ λG(x, y), (1.4)

λG−s(u, v) ≥ λG(u, v) − ⌊
dG(s)

2
⌋. (1.5)

Indeed, if a cut Q separates x and y in G/X then Q also separates them in
G and (1.4) follows. On the other hand, if P is a set of λG(u, v) edge-disjoint

paths in G then at most ⌊dG(s)
2 ⌋ of them may contain the vertex s and hence

the other paths of P belong to G − s and (1.5) follows.

A graph G = (V,E) is called k-edge-connected in U (for some k ∈
Z+ and U ⊆ V ) if λG(x, y) ≥ k ∀x, y ∈ U . This definition will be usually
used for U = V or V − s with a specified vertex s of V , in which case it is
equivalent to (1.6). λ(G) denotes the global edge-connectivity of G that is
the maximum integer k so that G is k-edge-connected. Given a symmetric
function r : V × V → Z+, we say that G is r-edge-connected if (1.7) is
satisfied.

dG(X) ≥ k ∀∅ 6= X ⊂ U, (1.6)

λG(u, v) ≥ r(u, v) ∀u, v ∈ V. (1.7)

Let G = (V + s,E) be a graph. By splitting off two edges sr, st we
mean the operation that replaces sr, st by a new edge rt, the new graph will
be denoted by Grt. Note that we do not allow loops so if r = t, then the
resulting loop must be deleted. A pair sr, st is called k-admissible if Grt is
k-edge-connected in V and it is called λ-admissible if (1.8) is satisfied. On
several occasions, the splitting off will be called k-admissible instead of the
edge pair. A sequence of splittings off is said to be complete if the degree of
s becomes 0. A complete splitting off is called k-admissible (λ-admissible)
if each splitting off in its sequence is k-admissible (λ-admissible, respectively).

λGrt
(x, y) ≥ λG(x, y) ∀ x, y ∈ V. (1.8)

Hypergraph: Let G := (V,E) be a hypergraph, that is E is a multiset of
subsets of V . The element of E are called hyperedges. Note that parallel
hyperedges are allowed. The above definitions of the degree funcion, local
edge-connectivity and k-edge-connectivity can be naturally generalized for
hypergraphs. Indeed, let G := (V,E) be a hypergraph. The degree dG(X)



6 Zoltán Szigeti

of a vertex set X is defined as the number of hyperedges intersecting X and
V − X. The local edge-connectivity between two different vertices x and
y of G is defined by λG(x, y)= min{dG(X) : x ∈ X, y /∈ X}, while λG(x, x) =
+∞. G is called k-edge-connected in U (for some k ∈ Z+ and U ⊆ V ) if
λG(x, y) ≥ k ∀x, y ∈ U . We say that a hypergraph H covers a function p if

dH(X) ≥ p(X) ∀ ∅ 6= X ⊂ V. (1.9)

Call a set X of V tight if dH(X) = p(X). c(G) denotes the number of
connected components of G. A hypergraph is r-uniform if each hyperedge is
of size r. A graph is a 2-uniform hypergraph. G is called a 2-3 hypergraph if
each hyperedge is of size two or three. The operation ∆ − Y replaces a given
3-hyperedge abc by the star qa, qb, qc of a new vertex q of degree three. The
operation Y −∆ replaces the star qa, qb, qc of a given vertex q of degree three
by a new 3-hyperedge abc. It is easy to check that the local edge-connectivities
between the original vertices do not change after a ∆−Y or a Y −∆ operation.

Set function: Let p : 2V → Z ∪ {−∞} be a set function. The function p
is called supermodular (crossing supermodular) if (1.10) holds for all
X,Y ⊆ V (for all X,Y ⊆ V that are crossing that is X ∩ Y,X − Y, Y −
X,V − (X ∪ Y ) 6= ∅) and p is called skew-supermodular if at least one of
(1.10) and (1.11) hold for all X,Y ⊆ V . We say that p is symmetric if (1.12)
is satisfied for each X ⊆ V . A function b : 2V → Z is called submodular
if −b is supermodular. Note that the degree function dG(X) of a graph G is
symmetric and, by (1.2), it is submodular.

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ), (1.10)

p(X) + p(Y ) ≤ p(X − Y ) + p(Y − X), (1.11)

p(X) = p(V − X). (1.12)

Given a symmetric function r : V × V → Z+, let us define R(X):=
max{r(x, y) : x ∈ X, y ∈ V − X}. It is known that R is skew-supermodular
(see e.g. in [16]).

Symmetric crossing supermodular functions generalize the deficiency func-
tion of a graph G concerning global edge-connectivity (that is the func-
tion k − dG(X) is symmetric crossing supermodular) and symmetric skew-
supermodular functions generalize the deficiency function of a graph G con-
cerning local edge-connectivity (that is the function R(X) − dG(X) is sym-
metric skew-supermodular).

1.3 Minimal extension

We start this section with a typical lemma that shows how to use the skew-
supermodularity of a function. Recall that if a graph H covers a set function
p, then a set X of V is called tight if dH(X) = p(X).
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Lemma 1. Let p : 2V → Z ∪ {−∞} be a symmetric skew-supermodular set
function. Let H = (V + s,E) be a graph that covers p. If X and Y are tight
sets and X ∩Y 6= ∅, then either (a) X ∩Y and X ∪Y are tight, or (b) X −Y
and Y − X are tight and d(X,Y ) = 0.

Proof. We may suppose that X − Y 6= ∅ 6= Y − X because otherwise (a) is
trivially satisfied.

If p satisfies (1.11) for X and Y then, by (1.3) and (1.9),

p(X) + p(Y ) = dH(X) + dH(Y )

= dH(X − Y ) + dH(Y − X) + 2d(X,Y )

≥ p(X − Y ) + p(Y − X) + 0

≥ p(X) + p(Y ),

so we have equality everywhere, implying (b).
Otherwise, X ∪ Y 6= V and p satisfies (1.10) for X and Y . Then, by (1.2)

and (1.9),

p(X) + p(Y ) = dH(X) + dH(Y )

≥ dH(X ∩ Y ) + dH(X ∪ Y )

≥ p(X ∩ Y ) + p(X ∪ Y )

≥ p(X) + p(Y ),

so we have equality everywhere, implying (a). ⊓⊔

All the augmentation results of this paper will be obtained by applying
the following general result of Frank and some suitable splitting off theorem.
For the sake of completeness we provide the proof of this theorem.

Theorem 1 (Frank [15], [1]). Let p : 2V → Z ∪ {−∞} be a symmetric
skew-supermodular function. Then the edgeless graph on V can be extended
to a graph H by adding a new vertex s and γ edges incident to s so that H
covers p if and only if

∑

X∈X

p(X) ≤ γ ∀X ∈ S(V ). (1.13)

Proof. Suppose that H = (V + s,E) covers p, each edge of H is incident to
s and dH(s) ≤ γ. Then, for any subpartition X of V , (1.13) is satisfied by

∑

X∈X

p(X) ≤
∑

X∈X

dH(X) ≤ dH(s) ≤ γ.

Now suppose that (1.13) is satisfied. The desired graph is constructed as
follows. First add a new vertex s to V and connect it to each vertex of V by
max{p(X) : X ⊂ V } edges. Then, of course, this graph covers p. Secondly,
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delete as many edges as possible preserving that p is covered. Let H be the
graph obtained. It remains to show that dH(s) ≤ γ.

No edge of H can be deleted, that is, each edge of H enters a tight set.
Thus there exists a set X := {X1, ...,Xl} of tight sets so that each edge enters

some set Xi and
∑l

1 |Xi| is minimal.
We claim that X is a subpartition of V. Suppose that Xi∩Xj 6= ∅ for some

Xi,Xj ∈ X . By Lemma 1, either Xi ∪ Xj is tight, hence Xi and Xj can be
replaced by Xi∪Xj or Xi−Xj and Xj −Xi are tight and d(Xi,Xj) = 0 (that
is no edge enters Xi ∩ Xj), so Xi and Xj can be replaced by Xi − Xj and

Xj − Xi. In both cases we obtained a contradiction to the fact that
∑l

1 |Xi|
is minimal.

Thus, X ∈ S(V ), so we are done because, by (1.13),

dH(s) =
∑

X∈X

dH(X) =
∑

X∈X

p(X) ≤ γ. ⊓⊔

1.4 Graphs

In this section we will present the problems on edge-connectivity augmentation
in graphs and their solutions. As we mentioned in the introduction, the basic
tool is splitting off. Each subsection is devoted to one problem, and it is
divided in two parts : results on splitting off and then, applying Theorem 1,
we read out the minimax result on augmentation.

1.4.1 Global edge-connectivity I

This section is about k-edge-connectivity for some k ≥ 2. First we consider the
operation splitting off: here the graph G = (V +s,E) is k-edge-connected in V
and we wish to reduce the graph (by splitting off an edge pair incident to s) in
such a way that the graph remains k-edge-connected in V . Then we consider
the augmentation problem where the aim is to make a graph k-edge-connected
by adding new edges.

Splitting off preserving global edge-connectivity

The first result on splitting off is due to Lovász [28]. It concerns global edge-
connectivity, namely it provides a sufficient condition for the existence of a
k-admissible splitting off. More precisely, Lovász showed that if k ≥ 2 and the
degree of the special vertex s is even, then each edge belongs to a k-admissible
pair at s. In [2] it was shown that each edge belongs to many k-admissible
pairs.

Theorem 2. Let G = (V +s,E) be a k-edge-connected graph in V with k ≥ 2
and d(s) is even. Then :
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(a) (Lovász [28]) each edge st belongs to a k-admissible pair at s.
(b) (Bang-Jensen, Gabow, Jordán, Szigeti [2]) each edge st belongs to at

least d(s)
2 (resp. d(s)

2 − 1) k-admissibles pairs at s if k is even (resp. odd).

B. Fleiner [14], and independently Bang-Jensen and Jackson [3] proved
that Theorem 2(a) is true for 2-3 hypergraphs containing no 3-hyperedges
incident to s. The special case of Theorem 2(b), when G is Eulerian, was
proved earlier by Jackson [21].

We must emphasize that the above theorem is true only if k ≥ 2. Let us
consider the following example for k = 1 : let the graph G = (V + s,E) be
the star of the vertex s of degree four. Then G is connected in V and there is
no complete 1-admissible splitting off. To avoid this problem we will usually
suppose that the connectivity requirement is at least two.

Augmentation of global edge-connectivity by adding edges

The problem of global edge-connectivity augmentation in graphs, al-
ready introduced and also solved in the introduction, is the following: Given
a graph G = (V,E) and an integer k, what is the minimum number γ of new
edges whose addition results in a k-edge-connected graph? In other words, we
are looking for

γ := min{|E′| : dG+E′(X) ≥ k ∀∅ 6= X ⊂ V }

= min{|E′| : d(V,E′)(X) ≥ k − dG(X) ∀∅ 6= X ⊂ V }.

As the function p(X) = k − dG(X) is symmetric and, by (1.2), skew-
supermodular, Theorems 1 and 2(a) imply the following theorem. (Cai and
Sun [8] also proved this result later using some splitting off technique.)

Theorem 3 (Watanabe and Nakamura [36]). Let G = (V,E) be a graph
and k ≥ 2. Then G can be made k-edge-connected by adding at most γ new
edges if and only if

∑

X∈X

(k − dG(X)) ≤ 2γ ∀X ∈ S(V ). (1.14)

We point out again that the case when k = 1 does not fit into this frame-
work. It is obvious that in this case we have to add l − 1 new edges, where l
is the number of connected components of the graph.

1.4.2 Local edge-connectivity I

In the above section we were interested in k-edge-connectivity, that is, in the
minimum value of the local edge-connectivities over all pairs of vertices. This
section concerns the problem where each value counts not just the minimum,
that is, we wish to add new edges to a graph so that the local edge-connectivity
be greater than or equal to a given requirement for each pair of vertices.
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Splitting off preserving local edge-connectivity

In this section we summarize results on splitting off preserving local edge-
connectivity. Mader [29] generalized Lovász’s result Theorem 2(a) for local
edge-connectivity by showing that a λ-admissible pair always exists if the
degree of the vertex s is different from 3 and roughly speaking G is 2-edge-
connected. This result implies that at most three edges incident to s belong
to no λ-admissible pair. Frank [16] improved this by showing that at most one
edge incident to s belongs to no λ-admissible pair. In [33] we characterized
this edge. Since not every edge belongs to a λ-admissible pair, the best we
may hope for is that there exists at least one edge that belongs to many λ-

admissible pairs. In [33] it is shown that the correct number is ⌊d(s)
3 ⌋ and

examples show that this result is best possible.

Theorem 4. Let G = (V + s,E) be a connected graph so that d(s) 6= 3 and
no cut edge is incident to s.

(a) (Mader [29]) There exists a λ-admissible pair at s.

(b) (Frank [16]) There exist ⌊d(s)
2 ⌋ disjoint λ-admissible pairs at s. (Hence

at most one edge incident to s belongs to no λ-admissible pair.)
(c) (Szigeti [33]) An edge st belongs to no λ-admissible pair if and only if

d(s) is odd and there exist two disjoint sets C1, C2 ⊂ V − t such that

d(Ci) = R(Ci) and d(s, Ci) = d(s)−1
2 for i = 1, 2. Moreover, for every

c1 ∈ C1 ∩ Γ (s), c2 ∈ C2 ∩ Γ (s), {sc1, sc2} is a λ-admissible pair.

(d) (Szigeti [33]) There exists an edge belonging to at least ⌊d(s)
3 ⌋ λ-admissible

pairs at s.

Augmentation of local edge-connectivity by adding edges

The problem of local edge-connectivity augmentation in graphs is
defined as follows: Given a graph G and a symmetric requirement function
r : V ×V → Z+, what is the minimum number γ of new edges whose addition
results in an r-edge-connected graph?

Note that, by taking r to be equal to k for each pair of vertices, this problem
contains, as a special case, the global edge-connectivity augmentation problem
in graphs.

Recall that R(X) = max{r(x, y) : x ∈ X, y ∈ V − X} is symmetric and
skew-supermodular. We can reformulate the problem as follows: we look for

γ := min{|E′| : λG+E′(u, v) ≥ r(u, v) ∀u, v ∈ V }

= min{|E′| : dG+E′(X) ≥ R(X) ∀∅ 6= X ⊂ V }

= min{|E′| : d(V,E′)(X) ≥ R(X) − dG(X) ∀∅ 6= X ⊂ V }.

As p(X) = R(X)− dG(X) is a symmetric, skew-supermodular function, The-
orems 1 and 4 imply the following theorem.
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Theorem 5 (Frank [15]). Let G = (V,E) be a graph and 2 ≤ r(u, v) ∈
Z ∀u, v ∈ V . Then G can be made r-edge-connected by adding at most γ new
edges if and only if

∑

X∈X

(R(X) − dG(X)) ≤ 2γ ∀X ∈ S(V ). (1.15)

Note that the special case of Theorem 5 when r(u, v) = k ∀u, v ∈ V is
exactly Theorem 3.

1.4.3 Symmetric parity families

A family F of subsets of V is called a symmetric parity family if it satisfies
the following three properties. (i) ∅, V /∈ F , (ii) if A ∈ F , then V − A ∈ F ,
(iii) if A,B /∈ F and A ∩ B = ∅, then A ∪ B /∈ F . Let T ⊆ V be a set of
even cardinality. A set X is called T-odd if |T ∩ X| is odd. If G = (V,E)
is a connected graph then (G,T ) is called a graft. A cut δG(X) is called a
T-cut if X is T-odd, more generally δG(X) is called an F-cut if X ∈ F .
The most important examples of parity families are F := 2V − {∅, V } and
F := {X ⊆ V : X is T-odd}.

In this section we will deal with F-cuts.

Splitting off preserving global edge-connectivity over symmetric
parity families

Theorem 4(a) implies easily the following.

Theorem 6 (Szigeti [32]). Let G = (V + s,E) be a graph so that d(s) > 0
is even and let F be a symmetric parity family on V. Suppose that for some
k ≥ 2,

d(X) ≥ k ∀X ∈ F . (1.16)

Then there exists a pair of edges incident to s that can be split off without
violating (1.16).

Augmentation of global edge-connectivity over symmetric parity
families

In this section we solve the following global edge-connectivity augmenta-
tion problem over a symmetric parity family: Given a graph G = (V,E),
a symmetric parity family F on V and an integer k, what is the minimum
number γ of edges whose addition results in a graph in which each F-cut
contains at least k edges?

A special case is the minimum T-cut augmentation problem: how many
new edges must be added to a graph so that the minimum T-cut contains at
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least k edges? It also contains, as a special case, the global edge-connectivity
augmentation problem in graphs.

For a symmetric parity family F , a graph G = (V,E) and k ∈ Z
+, let

p(X) := k − dG(X) if X ∈ F , and −∞ otherwise. The problem of edge-
connectivity augmentation over a symmetric parity family can be reformulated
as follows: what is the value

γ := min{|E′| : dG+E′(X) ≥ k ∀X ∈ F}

= min{|E′| : d(V,E′)(X) ≥ p(X) ∀X ⊆ V }?

It is easy to see that p is a symmetric skew-supermodular function, so Theo-
rems 1 and 6 provide at once the following theorem.

Theorem 7 (Szigeti [32]). For a graph G = (V,E), a symmetric parity
family F on V and an integer k ≥ 2, the minimum cardinality of an F-cut
can be augmented to k by adding at most γ edges if and only if

l∑

i=1

(k − d(Xi)) ≤ 2γ ∀{X1, . . . ,Xl} ∈ S(V ) with Xi ∈ F . (1.17)

By applying Theorem 7, for F = 2V − {∅, V } we get Theorem 3, and, for
F being the set of T-odd subsets of V, we get the following theorem on T-cuts.

Theorem 8 (Szigeti [32]). For any graft (G,T ), the minimum cardinality
of a T-cut can be augmented to k ≥ 2 by adding at most γ edges if and only
if

∑
X∈X (k − d(X)) ≤ 2γ for each subpartition X of V into T-odd sets.

1.4.4 Node to area edge-connectivity

The node to area global edge-connectivity augmentation problem can
be defined as follows: Given a graph G = (V,E), a family A of sets A ⊆ V
(called areas), and a requirement function r : A → Z+, add a minimum
number Opt(r, G) of new edges to G so that the resulting graph contains
r(A) edge-disjoint paths from any area A to any vertex v /∈ A.

Note that, by taking just one vertex as the family of areas and k as the
requirement for this vertex, then we get as a special case the global edge-
connectivity augmentation problem in graphs.

Let us define PA(X) = max{r(A) : A ∈ A, A ∩ X = ∅ or A ⊆ X} if
V 6= X 6= ∅ and PA(V ) = PA(∅) = 0 and QA(G) := max{

∑
X∈X qA(X) : X ∈

S(V )}, where qA(X) = PA(X) − dG(X).

Now we can provide a lower bound for the optimal value, namely Opt(r,G)

≥ ⌈QA(G)
2 ⌉. The question is whether we have always equality here or not.

Usually equality will hold, unless the graph contains a special configuration.
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The node to area global edge-connectivity augmentation problem is a spe-
cial case of the symmetric semi-monotone function covering problem treated
in Section 1.6.2, so Theorem 29 implies the following. We mention that the
above defined PA(X) is the symmetric semi-monotone function to be covered.

Theorem 9 (Ishii, Hagiwara [19]). Let G = (V,E) be a graph, A a family
of sets A ⊆ V , and r : A → Z+ a requirement function so that r(A) 6= 1 ∀A ∈

A. If G contains no A-configuration, then Opt(r,G) = ⌈QA(G)
2 ⌉, otherwise

Opt(r,G) = ⌈QA(G)
2 ⌉ + 1.

The definition of a A-configuration can be found in [19], where it is called
P-property. We mention that if A = {v} and r(v) = k, then no A-configuration
can exist, so Theorem 9 implies Theorem 3. We remark that without the
condition r(A) 6= 1 ∀A ∈ A, the problem is NP-complete, see Section 1.6.2.

1.4.5 Global edge-connectivity II

Let us return to global edge-connectivity. First we generalize the operation
splitting off, by introducing detachment, and then we consider the problem
where we wish again to make a graph k-edge-connected, but this time by at-
taching stars. The essential tool to solve this problem is exactly the operation
detachment.

Detachments preserving global edge-connectivity

In this section we generalize the operation splitting off.

Let G = (V + s,E) be a graph. A degree specification for s is a se-
quence f(s)= (d1, . . . , dp) of positive integers with

∑p
j=1 dj = dG(s). An

f(s)-detachment of G at s is the graph G′ obtained from G by replacing s
by a set s1, . . . , sp of independent vertices and distributing the edges incident
to s among them in such a way that dG′(si) = di (1 ≤ i ≤ p). Note that all
the other ends of the edges in G remain the same.

Let us mention that a splitting off can really be considered as a special
case of detachment, namely if after a splitting off we subdivide the new edge
then the new graph is a (2, d(s)− 2)-detachment and this operation does not
change the local edge-connectivities between the original vertices.

The following beautiful theorem of B. Fleiner characterizes graphs that
have a k-edge-connected f(s)-detachment.

Theorem 10 (B.Fleiner [14]). Let G = (V + s,E) be a graph, 2 ≤ k ∈ Z

and f(s) = (d1, . . . , dp) a degree specification for s with di ≥ 2 ∀i. Then there
exists an f(s)-detachment of G that is k-edge-connected in V if and only if

G is k-edge-connected in V , (1.18)

G − s is (k −
∑p

1⌊
di

2 ⌋)-edge-connected. (1.19)
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We note that the special case of Theorem 10, when each di is even, is equiv-
alent to Theorem 2(a). Indeed, in this case the condition (1.19) is automati-
cally satisfied by (1.5) and hence Theorem 10 implies Theorem 2(a). On the
other hand, by Theorem 2(a), there exists a complete k-admissible splitting
off, subdividing each new edge by a vertex and combining the suitable number
of new vertices, an f(s)-detachment is obtained which is k-edge-connected in
V by (1.4), and hence Theorem 2(a) implies this special case of Theorem 10.

The proof technique of B. Fleiner [14] needed the more general framework
of 2-3 hypegraphs. He proved that Theorem 10 is true for 2-3 hypergraphs
containing no 3-hyperedges incident to s.

We give a generalization of this result in Section 1.4.6, for which we will
provide a short proof in the appendix, much shorter than the original proof
of B. Fleiner of Theorem 10.

Augmentation of global edge-connectivity by attaching stars

By attaching a star of degree d to a graph G, we mean adding a new vertex
and connecting it to some vertices of G so that the degree of the new vertex
becomes d. The problem of this section is the global edge-connectivity
augmentation problem of a graph by attaching stars that can be de-
fined as follows: Given a graph G = (V,E) and integers k, d1, . . . , dp, decide
whether it is possible to attach p stars to G with degrees d1, . . . , dp to have a
k-edge-connected graph in V .

Note that, by taking each di to be equal to 2, we get as a special case the
global edge-connectivity augmentation problem in a graph.

The solution of the problem of this section is given in the following theorem
of B. Fleiner which is implied by Theorems 1 and 10. It might be advantageous
to notice that condition (1.20) and the fact that k− d(X) is symmetric skew-
supermodular guarantees that the minimal extension can be made by

∑p
j=1 dj

edges, while condition (1.21) allows us to find the suitable detachment.

Theorem 11 (B. Fleiner [14]). A graph G = (V,E) can be made k-edge-
connected (k ≥ 2) by attaching p stars with degrees d1, . . . , dp (di ≥ 2 ∀i) if
and only if

∑

X∈X

(k − d(X)) ≤

p∑

j=1

dj ∀X ∈ S(V ), (1.20)

k −

p∑

j=1

⌊
dj

2
⌋ ≤ λ(G). (1.21)

Note that, for di = 2 ∀i, (1.21) is satisfied by (1.20). Indeed, for X ⊂ V
with d(X) = λ(X), by (1.20) for {X,V −X}, (k−d(X))+(k−d(V −X)) ≤ 2p,
so by the symmetry of d(X), k − p ≤ d(X) = λ(G), that is, (1.21) is satisfied.
Hence Theorem 11 implies Theorem 3.
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1.4.6 Local edge-connectivity II

In this section we generalize the results of the previous section. First we extend
the Theorem of B. Fleiner to the case when local edge-connectivity is involved,
and then we solve the problem where we wish to attach stars of given degree
to a graph so that the local edge-connectivity be greater than or equal to a
given requirement for each pair of vertices.

Detachments preserving local edge-connectivity

Recall that G = (V +s,E) is r-edge-connected if λG(u, v) ≥ r(u, v) ∀u, v ∈ V,
where r : V ×V → Z+ is a symmetric requirement function. In the next result
we characterize graphs that have an r-edge-connected f(s)-detachment.

Note that, by taking r to be equal to k for each pair of vertices, we get a
characterization of graphs having a k-edge-connected f(s)-detachment.

Theorem 12 (Jordán, Szigeti [24]). Let G = (V + s,E) be a graph, r a
symmetric requirement function on V with r(u, v) ≥ 2 ∀u, v ∈ V and f(s) =
(d1, . . . , dp) a degree specification for s with di ≥ 2 ∀i. Let ϕ =

∑p
1⌊

di

2 ⌋. Then
there exists an r-edge-connected f(s)-detachment of G if and only if

G is r-edge-connected, (1.22)

G − s is (r−ϕ)-edge-connected. (1.23)

The special case of Theorem 12, when r(u, v) = k ∀u, v ∈ V, is Theorem
10, and when r(u, v) = λG(u, v) ∀u, v ∈ V, provides a characterization of the
existence of an f(s)-detachment that preserves local edge-connectivities, while
when at most one di is odd, is equivalent to Theorem 4(a).

We will provide a short proof of the above theorem in Section 1.8.1. It will
use Theorem 4(a) so it does not provide a new proof for Theorem 4(a). Note
that it provides a short proof for Theorem 10.

Augmentation of local edge-connectivity by attaching stars

In this section we solve the following global edge-connectivity augmenta-
tion problem of a graph by attaching stars: Given a graph G = (V,E),
a symmetric requirement function r : V × V → Z+ and integers d1, . . . , dp,
decide whether it is possible to attach p stars to G with degrees d1, . . . , dp, so
as to obtain an r-edge-connected graph in V .

Note that, by taking r to be equal to k for each pair of vertices, we get as a
special case the global edge-connectivity augmentation problem of a graph by
attaching stars, and by taking each di to be equal to 2 but r being arbitrary,
we get the local edge-connectivity augmentation problem.
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Recall that R(X) = max{r(x, y) : x ∈ X, y ∈ V − X} and that the
function R(X) − d(X) is symmetric skew-supermodular. Then Theorems 1
and 12 imply at once the following theorem. As for the global case, we may
notice that condition (1.24) guarantees that the minimal extension can be
made by

∑p
j=1 dj edges, while condition (1.25) allows us to find the suitable

detachment.

Theorem 13 (Jordán, Szigeti [24]). Let G = (V,E) be a graph, r : V ×
V → Z+ a symmetric requirement function with r(u, v) ≥ 2 ∀u, v ∈ V. Then G
can be made r-edge-connected by attaching p stars with degrees d1, . . . , dp (di ≥
2 ∀i) if and only if

∑

X∈X

(R(X) − d(X)) ≤

p∑

j=1

dj ∀X ∈ S(V ), (1.24)

r(u, v) −

p∑

j=1

⌊
dj

2
⌋ ≤ λG(u, v) ∀u, v ∈ V. (1.25)

Note that, if r(u, v) = k ∀u, v ∈ V, then (1.24) and (1.25) are equivalent to
(1.20) and (1.21), so Theorem 13 implies Theorem 11, and if di = 2 ∀i, then
(1.24) implies (1.25) (that can be shown similarly, as it was shown for the
global case) and hence Theorem 13 implies Theorem 5. Hence, our result is a
common generalization of B. Fleiner’s theorem on global edge-connectivity au-
mentation by attaching stars and Frank’s theorem on local edge-connectivity
aumentation by adding edges.

1.4.7 Globel edge-connectivity with partition constraints

The aim of this section is to present the solution of the problem of global
edge-connectivity augmentation in bipartite graphs. In fact, we consider a
more general setting, namely the global edge-connectivity augmentation
problem of a graph with partition constraints: we want to make an
arbitrary graph k-edge-connected by adding a minimum number of new edges
between different members of a given partition of the vertex set.

Splitting off preserving global edge-connectivity with partition
constraints

Let G = (V + s,E) be a graph with a specified vertex s of even degree, and
P = {P1, . . . , Pr} a partition of V (resp. δ(s)). If we have a partition of V ,
then obviously we may define a partition of δ(s), hence the second form is
more general than the first one. A splitting off {su, sv} is called P-allowed
if u and v (resp. su and sv) belong to different members of P. A k-admissible
P-allowed splitting off will be called allowed. We wish to characterize graphs
and partitions for which there exists a complete allowed splitting off, that
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is, we are interested in a complete splitting off, that is, at the same time P-
allowed and k-admissible. Notice that a complete P-allowed splitting off exists

if and only if d(s, Pi) ≤
d(s)
2 ∀ 1 ≤ i ≤ r, while, as it is already known for us, a

complete k-admissible splitting off exists if and only if G is k-edge-connected
in V. Are these conditions together sufficient to have an allowed complete
splitting off? We will answer this question in this section.

To show the difficulties of our problem, suppose we wish to make 3-edge-
connected a 4-cycle C4. Clearly, this can be done by adding two edges. Note
that the optimal solution is unique, we have to transform the graph into a
K4. Now suppose that we have an additional condition, we must maintain the
bipartiteness of C4. Then this solution is not feasible any more. In this case we
have to add 3 edges. Let us reformulate this difficulty in terms of splitting off.
Let G be the graph obtained from C4 by adding a new vertex s and connecting
s to all the four vertices. Let P be the bipartion of C4. Then G admits no
complete 3-admissible P-allowed splitting off. The essential properties of this
example are kept in a more general structure called C4-obstacle, defined as
follows.

A partition {A1, A2, A3, A4} of V is called a C4-obstacle of G if k is odd and

d(Ai) = k ∀1 ≤ i ≤ 4, (1.26)

d(Ai, Ai+2) = 0 ∀1 ≤ i ≤ 2, (1.27)

|Pl| =
d(s)

2
∃1 ≤ l ≤ r, (1.28)

δ(Aj ∪ Aj+2) ∩ δ(s) = Pl ∃1 ≤ j ≤ 2. (1.29)

Another difficulty may turn up if the partition contains more than two
members. Suppose we wish to make 3-edge-connected a 6-cycle C6. Clearly,
this can be done by adding three edges. Note that, though the optimal solution
is not unique, we have to add at least one diagonal edge. Now suppose that
we have the additional condition that we must maintain the non-adjacency
of the opposite vertices of C6. Then this solution is not feasible any more. In
this case we have to add 4 edges. Let us reformulate this difficulty in terms
of splitting off. Let G be the graph obtained from C6 by adding a new vertex
s and connecting s to all the six vertices. Let P the 3-partion of C6 where
the sets consist of the opposite vertices of C6. Then G admits no complete
3-admissible P-allowed splitting off. As before, the essential properties of this
example are kept in a more general structure called C6-obstacle, defined as
follows.

A partition {A1, . . . , A6} of V is called a C6-obstacle of G if k is odd and

d(Ai) = k ∀1 ≤ i ≤ 6, (1.30)

d(Ai, Ai+1) =
k − 1

2
∀1 ≤ i ≤ 6, (A7 = A1) (1.31)

d(s,Ai) = 1 ∀1 ≤ i ≤ 6, (1.32)
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δ(Aj ∪ Aj+3) ∩ δ(s) = Plj ∀1 ≤ j ≤ 3,∃1 ≤ lj ≤ r. (1.33)

We must emphasize that these difficulties may exist only if the target
edge-connectivity is odd, and if one of them exists, then no complete allowed
splitting off may exist. Now we are in a position to provide a characterization
of the existence of a complete allowed splitting off.

Theorem 14 (Bang-Jensen, Gabow, Jordán, Szigeti [2]). Let G = (V +
s,E) be a graph with d(s) even, 2 ≤ k ∈ Z, and P = {P1, . . . , Pr} a partition
of V . Then there exists a complete k-admissible P-allowed splitting off at s if
and only if

G is k-edge-connected in V, (1.34)

d(s, Pi) ≤
d(s)

2
∀1 ≤ i ≤ r, (1.35)

G contains no C4- or C6-obstacle. (1.36)

In the special case, when each element of P is a singleton, no C4 or C6-
obstacle can exist, thus Theorem 14 implies Theorem 2(a), while when |P| =
2, it provides (with Theorem 1) a solution for the problem of global edge-
connectivity augmentation in bipartite graphs. We may observe that in this
case no C6-obstacle can exist.

The following result from [35] is a slight generalization of Theorem 14. The
motivation of this form is that it allows us to contract tight sets and hence it
enables us to simplify the proof that will be presented in Section 1.8.2.

Theorem 15 (Szigeti [35]). Let G = (V + s,E) be a graph with d(s) even,
2 ≤ k ∈ Z, and P = {P1, . . . , Pr} a partition of δ(s). Then there exists a
complete k-admissible P-allowed splitting off at s if and only if (1.34), (1.36)
and the following condition are satisfied.

|Pi| ≤
d(s)

2
∀1 ≤ i ≤ r. (1.37)

Augmentation of global edge-connectivity with partition
constraints

We present a more precise reformulation of the problem of this section: Given
a graph G = (V,E), an integer k and a partition P = {P1, . . . , Pr} of V , what
is the minimum number OPT k

P
of P-allowed edges whose addition results in

a k-edge-connected graph?

Note that, by taking the partition of all singletons in this problem, we
get as a special case the global edge-connectivity augmentation problem in
graphs.

The following theorem answers this problem. Let Φ:= max{α, β1, . . . , βr}
where
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α := max{⌈
∑

X∈X

k − d(X)

2
⌉ : X ∈ S(V )},

βj := max{
∑

Y ∈Y

(k − d(Y )) : Y ∈ S(Pj)} ∀1 ≤ j ≤ r.

It is crucial to point out that Φ is a lower bound for the optimal value,
that is,

OPT k
P ≥ Φ. (1.38)

Indeed, by adding an edge to G we may decrease the deficiency k − d(Z) of
at most two sets in X and of at most one set in each Y, and hence we can
decrease Φ by at most one.

We will have equality in (1.38), unless G contains one of the following
two configurations. These are the structures that force us to have a C4- or
C6-obstacle in any optimal extension.

A partition {A1, A2, A3, A4} of V is called a C4-configuration of G if k
is odd and

d(Ai) < k ∀1 ≤ i ≤ 4, (1.39)

d(Ai, Ai+2) = 0 ∀1 ≤ i ≤ 2, (1.40)
∑

X∈Xi

(k − d(X)) = k − d(Ai) ∃Xi ∈ S(Ai) ∀1 ≤ i ≤ 4, (1.41)

Xj ∪ Xj+2 ∈ S(Pl) ∃1 ≤ l ≤ r ∃1 ≤ j ≤ 2, (1.42)

k − d(Ai) + k − d(Ai+2) = Φ ∀1 ≤ i ≤ 2. (1.43)

A partition {A1, A2, . . . , A6} of V is called a C6-configuration of G if k
is odd and

d(Ai) = k − 1 ∀1 ≤ i ≤ 6, (1.44)

d(Ai, Ai+1) =
k − 1

2
∀1 ≤ i ≤ 6, (A7 = A1) (1.45)

Φ = 3 ∀1 ≤ i ≤ 6, (1.46)

d(A′
i) = k − 1 ∃1 ≤ j1, j2, j3 ≤ r ∀1 ≤ i ≤ 6 (1.47)

∃A′
i ⊆ Ai ∩ Pj

i−3⌊
(i−1)

3
⌋
,

where the ji’s must be different in (1.47).

Since these configurations force us to have an obstacle in any optimal
extension, in which case there exists no complete allowed splitting off in the
extended graph, the existence of a configuration implies that the optimal
solution must contain at least Φ + 1 edges. We show that this can be achived.
Using Theorems 1 and 14 we can prove with some effort the following result.
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Theorem 16 (Bang-Jensen, Gabow, Jordán, Szigeti [2]). Let G =
(V,E) be a connected graph, P = {P1, . . . , Pr} a partition of V and k ≥ 2.
Then G can be made k-edge-connected by adding Φ P-allowed edges (that is
OPT k

P = Φ) unless G contains a C4- or C6-configuration when we need one
more edge (that is OPT k

P = Φ + 1).

As the global edge-connectivity augmentation problem without partition
constraints can be considered as one with partition constraints where each
element of P is a singleton, in which case no C4- or C6-configuration can
exist and Φ = α, Theorem 16 implies Theorem 3. We note that if we want to
augment the global edge-connectivity of a bipartite graph then |P| = 2 and
hence a C6-configuration can not exist.

1.5 Hypergraphs

In this section we wish to present problems on edge-connectivity augmentation
in hypergraphs and their solutions. We continue with the same structure as
before: each subsection is devoted to one problem, and it is divided in two
parts; results on splitting off and then the minimax result on augmentation.
We mention that some of the problems that were easy in graphs turn out to
be already too difficult in hypergraphs.

1.5.1 Augmentation of global edge-connectivity in a hypergraph
by adding graph edges

In this section we consider the problem of global edge-connectivity aug-
mentation in hypergraphs by adding graph edges, that can be formu-
lated as follows: Given a hypergraph G and k ∈ Z

+, what is the minimum
number of graph edges (hyperedges of size two) whose addition results in a
k-edge-connected hypergraph?

Of course, if the hypergraph is in fact a graph, then the problem reduces
to the global edge-connectivity augmentation problem in graphs.

One of the main difficulties with hypergraphs that we have to handle the
case when k = 1. Why is it so? Becasue by deleting a hyperedge the number
of connected components may increase by a large value. This discussion shows
the necessity of condition (1.49).

The corresponding splitting off result is the following.

Theorem 17 (Bang-Jensen, Jackson [3]). Let G = (V + s, E) be a hyper-
graph and γ, k ∈ Z

+ so that d(s) = 2γ and each edge incident to s is of size
two. Then there is a complete k-admissible splitting off at s if and only if

G is k-edge-connected in V, (1.48)

c(G − s −H) − 1 ≤ γ ∀H ⊆ E , |H| ≤ k − 1. (1.49)
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If G is a graph, then the second condition of the above theorem is satisfied
(after deleting k − 1 edges in a k-edge-connected graph, the graph remains
connected) and hence Theorem 17 implies Theorem 2(a).

Theorems 1 and 17 imply the following theorem that solves the problem of
this section. We notice that (1.50) and the fact that the function k − dH(X)
is symmetric skew-supermodular guarantees that the optimal extension (with
respect to k) can be made by 2γ edges and (1.51) allows us to find the complete
k-admissible splitting off.

Theorem 18 (Bang-Jensen, Jackson [3]). Let G be a hypergraph and k ∈
Z

+. Then G can be made k-edge-connected by adding at most γ new edges
(hyperedges of size two) if and only if

∑

X∈X

(k − dG(X)) ≤ 2γ ∀X ∈ S(V ), (1.50)

c(G −H) − 1 ≤ γ ∀H ⊆ E(G), |H| ≤ k − 1. (1.51)

As above, if G is a graph, then (1.51) is implied by (1.50) and hence
Theorem 18 implies Theorem 3.

1.5.2 Augmentation of global edge-connectivity of a hypergraph
by adding a uniform hypergraph

As a natural generalization of the problem of the previous section, one can
consider the global edge-connectivity augmentation problem of a hy-
pergraph by adding hyperedges of the same size, namely: Given a
hypergraph G and k, r ∈ Z

+, what is the minimum number of hyperedges of
size r whose addition results in a k-edge-connected hypergraph?

Since the function k − dH(X) is symmetric crossing supermodular, the
problem of covering a symmetric crossing supermodular function by a uniform
hypergraph contains this problem as a special case, thus Theorem 26 implies
the following theorem. We mention that it is not easy to see that (1.54) implies
(1.65) when p(X) = k − dG(X).

Theorem 19 (T. Király [26]). Let G = (V, E) be a hypergraph and k, r ∈
Z+, r ≤ |V |. Then G can be made k-edge-connected by adding at most γ new
hyperedges of size r if and only if

∑

X∈X

(k − dG(X)) ≤ rγ ∀X ∈ S(V ), (1.52)

k − dG(X) ≤ γ ∀X ⊆ V, (1.53)

c(G −H) − 1 ≤ (r − 1)γ ∀H ⊆ E , |H| = k − 1. (1.54)

The special case when we want to augment the edge-connectivity from k
to k+1 was solved earlier in Fleiner, Jordán [13]. Note that, when r = 2, then
(1.52) and (1.54) reduce to (1.50) and (1.51), and (1.53) is implied by (1.52),
so Theorem 19 implies Theorem 18.
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1.5.3 Augmentation of local edge-connectivity of a hypergraph by
adding graph edges

This section is the devoted to the following problem.

Hypergraph Local Edge-Connectivity Augmentation by a Graph

Instance: A hypergraph H on V, a symmetric requirement function r(u, v) ∈
Z ∀u, v ∈ V , and γ ∈ Z+.
Question: Does there exist a graph G = (V,E) with at most γ edges so that
λH+G(u, v) ≥ r(u, v) ∀u, v ∈ V ?

The following theorem shows that this problem is already too complicated.

Theorem 20 (Cosh, Jackson, Z. Király [11]). The problem Hyper-

graph Local Edge-Connectivity Augmentation by a Graph is NP-
complete.

We mention that the above problem remains NP-complete if the hyper-
graph contains only just one hyperedge of size greater than 2.

We remark that the special case of the problem Hypergraph Local

Edge-Connectivity Augmentation by a Graph for 2-3 hypergraphs is
tractable. This is because of the fact that a 2-3 hypergraph can be transformed
into a graph with the same local edge-connectivities and vice versa. Thus
Theorem 12 implies the following.

Theorem 21 (Jordán, Szigeti [24]). Let r be a requirement function with
2 ≤ r(u, v) ∈ Z ∀u, v ∈ V. A 2-3 hypergraph G = (V,E) can be made r-edge-
connected by adding γ edges and γ′ 3-hyperedges if and only if

∑

X∈X

(R(X) − d(X)) ≤ 2γ + 3γ′ ∀X ∈ S(V ), (1.55)

G is r−(γ + γ′)-edge-connected. (1.56)

1.5.4 Bipartite constrained augmentation of local
edge-connectivity of a hypergraph by adding graph edges

In this section we consider a restricted version of the main problem of the
preceding section.

Bipartition Constrained Hypergraph Local Edge-Connectivity

Augmentation by a Graph

Instance: A hypergraph H on V, a bipartition {A,B} of V , a symmetric re-
quirement function r(u, v) ∈ Z ∀u, v ∈ V , and γ ∈ Z+.
Question: Does there exist a bipartite graph G = (A,B;E) with colour classes
A and B with at most γ edges so that λH+G(u, v) ≥ r(u, v) ∀u, v ∈ V ?

By checking the proof of Theorem 20 given in [11] we may observe that it
also provides the NP-completeness of the above problem.

Theorem 22. The problem Bipartition Constrained Hypergraph Lo-

cal Edge-Connectivity Augmentation by a Graph is NP-complete.
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1.5.5 Augmentation of local edge-connectivity of a hypergraph by
adding hyperedges

In this section we want to augment a hypergraph by adding hyperedges to
satisfy local edge-connectivity requirements. The problem of minimizing the
number of hyperedges is trivial since we can add the whole vertex set as
many times as needed. What we want to minimize is the total size of the
hypergraph to be added, that is, the sum of the sizes of the hyperedges.
More precisely, the local edge connectivy augmentation problem of a
hypergraph by adding hyperedges is the following: Given a hypergraph G
and a symmetric requirement function r : V ×V → Z+, what is the minimum
total size

∑
H∈H |H| of new hyperedges H ∈ H whose addition results in an

r-edge-connected hypergraph?

Recall that R(X) = max{r(x, y) : x ∈ X, y ∈ V − X} and that the
function R(X) − dG(X) is symmetric skew-supermodular. Then the problem
of covering a symmetric skew-supermodular function by a hypergraph contains
this problem as a special case thus Theorem 31 implies the following theorem.

Theorem 23 (Szigeti [31]). Let G be a hypergraph on V and r(u, v) ∈
Z+ ∀u, v ∈ V a symmetric requirement function. Then there exists a hy-
pergraph H on V with

∑
H∈H |H| ≤ γ so that λG+H(u, v) ≥ r(u, v) ∀u, v ∈ V

if and only if
∑

X∈X

(R(X) − dG(X)) ≤ γ ∀X ∈ S(V ). (1.57)

1.6 Abstract forms

In this section we present results on ”connectivity” set functions, that gener-
alize the results presented in the previous sections. We start with a generaliza-
tion of splitting off. Let p : 2V → Z be a function and H = (V + s,E) a graph
so that each edge is incident to s. By a complete hypergraph splitting
off we mean a hypergraph H on V such that H covers p and the following is
satisfied:

dH(v) = dH(v) ∀v ∈ V. (1.58)

In other words, it is a degree constrained hypergraph that covers p. Note that
there is no restriction on the size of the hyperedges. If we pose the restriction
that each hyperedge must be of size at most two, then we are back to the
definition of the usual complete splitting off.

1.6.1 Symmetric crossing supermodular functions

The problem of covering a symmetric crossing supermodular function can be
considered as a generalization of the global edge-connectivity augmentation
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problem. In this section we present the result of Benczúr and Frank on cover-
ing a symmetric crossing supermodular function by a graph (that generalizes
Theorem 17) and then its generalization due to T. Király on covering such a
function by an r-uniform hypergraph (that also generalizes Theorem 19).

Complete uniform hypergraph splitting off

The splitting off results that will solve (together with Theorem 1) the above
mentioned problems are the following. We call the attention to the fact that
in Theorem 24 a hyperedge may contain the same vertex many times and the
size of the hyperedge is meant by multiplicities.

A partition {V1, . . . , Vl} of V is called an l-partition. Let r ∈ Z+,
H = (V + s,E) a graph so that each edge is incident to s and r divides
dH(s) and p : 2V → Z+ a set function. An l-partition is called p-full if l > r
and p(

⋃
i∈I Vi) > 0 ∀∅ 6= I ⊂ {1, . . . , l}. A p-full partition is called deficient

if l−1
r−1 > dH(s)

r . We say that the set function p is positively crossing super-
modular if (1.10) is satisfied if X,Y ⊆ V are crossing with p(X), p(Y ) > 0.

Theorem 24 (T. Király [26]). Let p : 2V → Z+ be a symmetric, positively
crossing supermodular set function, r ≥ 2 an integer, and H = (V + s,E) a
graph so that each edge is incident to s with r divides dH(s). Then there exists
a complete r-uniform hypergraph splitting off if and only if

min{dH(X), dH(s)/r} ≥ p(X) ∀X ⊆ V, (1.59)

There are no deficient partitions. (1.60)

The special case when r = 2 was proved earlier by Benczúr and Frank [6].

Covering a symmetric crossing supermodular function by a graph

As a generalization of the global edge-connectivity augmentation in hyper-
graphs by adding graph edges, Benczúr and Frank considered the problem of
covering a symmetric crossing supermodular function by a graph,
namely: Given a symmetric, positively crossing supermodular set function p,
what is the minimum number of edges that cover p?

As a generalization of Theorem 18 they proved in [6] the following result
by applying Theorem 1 and their splitting off result which is the r = 2 special
case of Theorem 24.

Theorem 25 (Benczúr, Frank [6]). Let p : 2V → Z+ be a symmetric,
positively crossing supermodular set function. Then there exists a graph on V
with γ edges that covers p if and only if

∑

X∈X

p(X) ≤ 2γ ∀X ∈ S(V ), (1.61)

l − 1 ≤ γ if a p-full l-partition exists. (1.62)
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For a hypergraph G, the function k−dG(X) is symmetric, positively cross-
ing supermodular, thus Theorem 25 implies Theorem 18.

Covering a symmetric crossing supermodular function by a
uniform hypergraph

As a generalization of the problems of covering a symmetric crossing super-
modular function by graph edges and of the global edge-connectivity aug-
mentation in hypergraphs by r-uniform hyperedges, T. Király considered the
problem of covering a symmetric crossing supermodular function by
an r-uniform hypergraph, namely: Given a symmetric, positively crossing
supermodular set function p and r ∈ Z

+, what is the minimum number of
hyperedges of size r that cover p?

As a generalization of Theorems 25 and 19 he obtained in [26] the following
result by applying Theorems 1 and 24.

Theorem 26 (T. Király [26]). Let p : 2V → Z+ be a symmetric, positively
crossing supermodular set function, 2 ≤ r ≤ |V | an integer. Then there exists
an r-uniform hypergraph on V with γ hyperedges that covers p if and only if

∑

X∈X

p(X) ≤ rγ ∀X ∈ S(V ), (1.63)

p(X) ≤ γ ∀X ⊆ V, (1.64)

l − 1 ≤ (r − 1)γ if a p-full l-partition exists. (1.65)

Note that Theorem 26 implies Theorem 25 (when r = 2) and Theorem 19
(when the function is the deficiency function of a hypergraph).

1.6.2 Symmetric skew-supermodular functions

The problem of covering a symmetric skew-supermodular function can be
considered as a common generalization of many of the preceding problems.
In this section we provide a nice proof of the NP-completeness of the prob-
lem of covering a symmetric skew-supermodular function by a graph (which
we know already since it generalizes the problem of local edge-connectivity
augmentation of a hypergraph by graph edges) while the problem of covering
such a function by a hypergraph is solvable in a certain sense.

Covering a symmetric skew-supermodular function by a graph

The problem of this section can be formulated as follows.

Minimum Cover of a Symmetric, Skew-Supermodular Function by

a Graph

Instance: A symmetric skew–supermodular function p on V and γ ∈ Z
+.
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Question: Does there exist a graph on V with at most γ edges that covers p?

Note that, as we already mentioned, the NP-complete problem Hyper-

graph Local Edge-Connectivity Augmentation by a Graph is a
special case of the problem Minimum Cover of a Symmetric, Skew-

Supermodular Function by a Graph and hence this last one is also
NP-complete, which we prove here in an elegant way. The proof is due to Z.
Király [27] and independently to Nutov [30].

Theorem 27. [27] The problem Minimum Cover of a Symmetric, Skew-

Supermodular Function by a Graph is NP-complete.

Proof. [Z. Király] We reduce 3dm to Minimum Cover of a Symmetric,

Skew-Supermodular Function by a Graph. Let H be a 3-uniform hy-
pergraph on V. Let n := |V |. Let p(X) := 1 if |X| ∈ {1, 2, n − 1, n − 2}, or
X ∈ H or V −X ∈ H and 0 otherwise. It is easy to verify that p(X) is a sym-
metric skew-supermodular set function. The following completes the proof.
There exists a graph on V with at most 2n/3 edges that covers p if and only if
H contans a 3-dimensional matching. Indeed, first suppose that H1, . . . ,Hn/3

is a 3-dimensional matching. For each Hi, let us choose two edges on V (Hi),
and let F be the union of these edges. Then |F | = 2n/3 and, clearly, F covers
p. Now suppose that the graph F covers p and |E(F )| ≤ 2n/3. Let F1, . . . , Fl

be the connected components of F . Since F covers p, |V (Fi)| ≥ 3 for 1 ≤ i ≤ l
thus l ≤ n/3. Then 2n/3 ≥ |E(F )| ≥ n− l ≥ 2n/3 so l = n/3 and |V (Fi)| = 3
for 1 ≤ i ≤ l. Since F covers p, each Fi belongs to H, that is, F1, . . . , Fl is a
3-dimensional matching. ⊓⊔

By the following theorem, which is an easy corollary of Theorem 31, Min-

imum Cover of a Symmetric, Skew-Supermodular Function by a

Graph can be solved if p(X) is even for every X ⊆ V.

Theorem 28 (Szigeti [31]). Let p be a symmetric, skew–supermodular,
”even integer” valued function on V. Then there exists a graph on V with
at most γ edges that covers p if and only if (1.61) is satisfied.

Proof. To prove the difficult part of Theorem 28, suppose that (1.61) is
satisfied and let p′(X) = p(X)/2. Then, by the assumptions on p, p′ is
a symmetric, skew–supermodular, integer valued function on V. Note that,
since p satisfies (1.61), p′ satisfies (1.13). Then, by Theorem 31, there ex-
ists a hypergraph H on V so that

∑
H∈H |H| ≤ γ and H covers p′, that is,

dH(X) ≥ p′(X). Let G := (V,∪H∈HEH) where EH is an arbitrary cycle on
V (H) for each H ∈ H. Then |E(G)| =

∑
H∈H |EH | =

∑
H∈H |H| ≤ γ and

dG(X) = 2dH(X) ≥ 2p′(X) = p(X), that completes the proof. ⊓⊔

Note that the problem Minimum Cover of a Symmetric, Skew-

Supermodular Function by a Graph contains as a special case : the
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global and local edge-connectivity augmentation in graphs and in hyper-
graphs, the global edge-connectivity augmentation over symmetric parity fam-
ilies, the node to area edge-connectivity augmentation, and the problem of
covering a symmetric crossing supermodular function by a graph.

Covering a symmetric semi-monotone function by a graph

In this section, we mention another special case of the NP-complete problem
Minimum Cover of a Symmetric, Skew-Supermodular Function by

a Graph, that can be solved in polynomial time.

We call a function P : 2V → Z semi-monotone if P (∅) = P (V ) = 0 and
for each set ∅ 6= X 6= V , 0 ≤ P (X) ≤ P (X ′) either for all ∅ 6= X ′ ⊆ X or for
all ∅ 6= X ′ ⊆ V − X. We note that a symmetric semi-monotone function is
skew-supermodular.

We consider the problem of Covering a symmetric semi-monotone
function by a graph: Given a graph G = (V,E) and a symmetric semi-
monotone function P on V, add a minimum number Opt(P, G) of new edges
to G to get a covering of P.

We have already seen in Section 1.4.4 that the node to area global edge-
connectivity augmentation problem is a special case of this problem. On the
other hand, any instance of the symmetric semi-monotone function covering
problem can easily be formulated as a node to area global edge-connectivity
augmentation problem. This discussion establishes the surprising equivalence
between two seemingly not closely related problems, showing that these are
two alternative models of the same problem. (see [20], [18])

We have to emphasize that this problem in general is NP-complete because
the function defined in the proof of Theorem 27 is semi-monotone. However,
if the function does not take the value 1, then it can be solved.

Let us define Q(G) := max{
∑

X∈X q(X) : X ∈ S(V )}, where q(X) =
P (X) − dG(X). Now we have a lower bound for the optimal value, namely

Opt(P,G) ≥ ⌈Q(G)
2 ⌉. Usually equality will hold, unless the graph contains a

special configuration.

Since the above defined function q(X) is symmetric skew-supermodular,
Theorem 1 and a suitable splitting result [18] provide the solution of the
covering problem.

Theorem 29 (Ishii [20], Grappe and Szigeti [18]). Let G = (V,E) be
a graph and P a symmetric semi-monotone function on V so that P (X) 6=

1 ∀X ⊆ V. If G contains no configuration, then Opt(P,G) = ⌈Q(G)
2 ⌉, otherwise

Opt(P,G) = ⌈Q(G)
2 ⌉ + 1.

The definition of the configuration (which is fairly complicated) and a short
proof of Theorem 29 can be found in [18]. Notice that Theorem 29 implies
Theorem 9.
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Complete hypergraph splitting off

For symmetric skew-supermodular functions we have the following splitting
off result.

Theorem 30 (Szigeti [31]). Let p : 2V → Z be a symmetric skew–
supermodular function. Let H = (V + s,E) be a graph so that each edge
is incident to s. Then there exists a complete hypergraph splitting off if and
only if H covers p.

T. Király [25] has recently found a very short proof for a slight extension
of Theorem 30.

Covering a symmetric skew-supermodular function by a
hypergraph

In this section we provide the solution for the problem of covering a sym-
metric skew-supermodular function by a hypergraph, that is, a gener-
alization of the problem of hypergraph local edge-connectivity augmentation
by hyperedges, and that can be formulated as follows: Given a symmetric
skew–supermodular function p, what is the minimum total size

∑
H∈H |H| of

a hypergraph H that covers p?

Theorems 1 and 30 provide the following generalization of Theorem 23.

Theorem 31 (Szigeti [31]). Let p : 2V → Z be a symmetric skew–
supermodular function. Then there exists a hypergraph H on V with

∑
H∈H |H|

≤ γ so that H covers p if and only if (1.13) is satisfied.

Note that only the total size of the hypergraph is guaranteed and no
information is available on the size of the hyperedges. This is not a surprise
in the light of the NP-completeness of the problem Minimum Cover of

a Symmetric, Skew-Supermodular Function by a Graph. However,
Bernáth and T. Király [7] have recently observed that the hypergraph H in
Theorem 31 can be chosen so that each edge except one is of size two. They
also proved that the hypergraph can be chosen so that each edge is of size k
or k + 1 for some 2 ≤ k ∈ Z.

1.7 Open problems

In this section we pose some open problems related to (more precisely: gen-
eralizing of) the problems of this paper.
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1.7.1 Graphs

The following open problem, called node to area local edge-connectivity
augmentation and mentioned in [19], is a natural generalization of the node
to area global edge-connectivity augmentation problem: Given a graph G =
(V,E), a family W of sets W ⊆ V , and a requirement function r : W × V →
Z+, add a minimum number of new edges to G so that the resulting graph
contains r(W, v) edge-disjoint paths from any area W ∈ W to any vertex
v /∈ W .

A result on partition constrained detachment preserving global
edge-connectivity would imply Theorems 15 and 10. To be more precise we
can consider the following problem: Given a graph G = (V +s,E), a partition
P of δ(s), a degree specification f(s) and a positive integer k, decide whether G
has an f(s)-detachment that is k-edge-connected in V and P-allowed (mean-
ing that for each new vertex si, the edges incident to si belong to different
members of P).

A characterization of the existence of a partition constrained complete
splitting off satisfiying a requirement function would imply Theorem 14
and also Theorem 12 as it was observed by Frank [17]. Indeed, for a graph G =
(V +s,E), a requirement function r : V ×V → Z+ (r(u, v) ≥ 2 ∀u, v ∈ V ) and
a degree specification f(s) = (d1, . . . , dp) (di ≥ 2 ∀i), let G′ be obtained from
G by adding p new vertices s1, . . . , sp and connecting each vertex si to s by di

new edges, let r′(u, v) := r(u, v) if u, v ∈ V and 2 if {u, v}∩{s1, . . . sp} 6= ∅ and
let P := {V, {s1, . . . , sp}}. Then G′′ is a complete r′-edge-connected P-allowed
splitting off of G′ if and only if G′′ is a r-edge-connected f(s)-detachment of
G.

Note that the complexity of the local edge-connectivity augmentation
problem in a graph with bipartition constraint is not known, however,
as we have seen, the problem Bipartition Constrained Hypergraph Lo-

cal Edge-Connectivity Augmentation by a Graph is NP-complete.

A common generalization of the above two problems is the problem of the
existence of a partition constrained detachment satisfying a require-
ment function.

1.7.2 Hypergraphs

The following problem of global edge-connectivity augmentation in hy-
pergraphs with hyperedges of given sizes is still open: Given a hyper-
graph G and k, d1, . . . , dp ∈ Z

+ decide whether it is possible to add p hyperedges
of sizes d1, . . . , dp to G to get a k-edge-connected hypergraph. More generally
we can consider the problem of covering a symmetric crossing supermodular
function with hyperedges of given sizes. A solution to these problems would
imply Theorems 19 and 24, respectively.
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We may also consider the problem of partition constrained complete
splitting off preserving global edge-connectivity in hypergraphs:
Given a hypergraph G = (V + s,E) such that G is k edge-connected in V
and no hyperedge of size at least three is incident to s, and a partition P of
δ(s), decide whether there exists a P-allowed k-admissible complete splitting
off at s. A result on this problem would imply Theorem 14. The bipartite case
was done by Cosh [10].

The following problem of detachment preserving global edge-connec-
tivity in hypergraphs is also open: Given a hypergraph G = (V +s,E) such
that G is k-edge-connected in V and no hyperedge of size at least three is in-
cident to s, and a degree specification f(s), decide whether there exists an
f(s)-detachment such that the resulting hypergraph is k-edge-connected in V .
A result on this problem would imply Theorems 10 and 17. The case of local
edge-connectivity (being a generalization of the problem Hypergraph Lo-

cal Edge-Connectivity Augmentation by a Graph) is NP-complete.

1.8 Appendix

1.8.1 A short proof of Theorem 12

The following short proof is from [34]. Note that, by Menger’s Theorem, G
is r-edge-connected if and only if hr

G(X) ≥ 0 ∀X ⊆ V, where hr
G(X) :=

dG(X) − R(X). The following basic property of the function h follows from
the facts that dG(X) satisfies both (1.2) and (1.3) and that R(X) is skew-
supermodular, and will be used frequently in this section. For any two subsets
X,Y ⊆ V at least one of (1.66) and (1.67) holds. If X ∪ Y = V then (1.67)
always holds (with equality).

hr
G(X) + hr

G(Y ) ≥ hr
G(X ∩ Y ) + hr

G(X ∪ Y ) + 2dG(X,Y ), (1.66)

hr
G(X) + hr

G(Y ) ≥ hr
G(X − Y ) + hr

G(Y − X) + 2dG(X,Y ). (1.67)

Proof of the necessity of Theorem 12

Let G′ := (V + {s1, . . . , sp}, E) be an r-edge-connected f(s)-detachment of G
at s. By (1.4), applied for X = {s1, . . . , sp}, (1.22) is satisfied since G′/X =
G. By (1.5), applied for every vertex si 1 ≤ i ≤ p, (1.23) is satisfied since
G′ − X = G − s. ⊓⊔

Proof of the sufficiency of Theorem 12

Wlog. p ≥ 2 and ϕ ≥ 2. We will use induction on z(G) := |V | + dG(s). As
we already mentioned, (1.22) and (1.23) can be reformulated as (1.68) and
(1.69). Note that (1.70) holds.
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hr
G(X) ≥ 0 ∀X ⊆ V, (1.68)

hr−ϕ
G−s(X) ≥ 0 ∀X ⊆ V. (1.69)

hr−ϕ
G−s(X) = hr

G(X) − dG(s,X) + ϕ ∀X ⊆ V. (1.70)

Lemma 2. We may assume that

every set ∅ 6= X ⊂ V with hr
G(X) = 0 is a singleton. (1.71)

Proof. Suppose there exists a set Q with hr
G(Q) = 0 and |Q| > 1. Then let

Ĝ := (V̂ , Ê) be obtained from G by contracting Q into a vertex q and let
r̂(u, v) := r(u, v) if u, v ∈ V̂ −q, and max{r(w, x) : w ∈ Q} if q ∈ {u, v} where
x = {u, v}− q. It can be verified easily that R̂(X̂) = R(X) ∀X̂ ⊆ V̂ , so (1.68)
and (1.69) are satisfied for Ĝ and r̂. Since |Q| > 1, z(Ĝ) < z(G) and hence, by
induction, Ĝ has an r̂-edge-connected f(s)-detachment Ĝ′. We show that the
graph G′ obtained from Ĝ′ by “blowing up” Q is r-edge-connected and we are
done. Let X ′ ⊆ V ′. Using that hr

G′(Q) = hr
G(Q) = 0, the skew-submodularity

of hr
G′ and the fact that if X ′ and Q are not intersecting then hr

G′(X ′) ≥ 0
(because if X ′ ⊂ Q then hr

G′(X ′) = hr
G(X) ≥ 0 by (1.68) and if Q ⊆ X ′ or

Q∩X ′ = ∅ then hr
G′(X ′) = hr̂

Ĝ′
(X̂ ′) ≥ 0 since Ĝ′ is r̂-edge-connected) we get

that hr
G′(X ′) ≥ 0 as we wanted. ⊓⊔

For T ⊂ δG(s), the T-split of G is the (|T |, dG(s) − |T |)-detachment G′

of G at s where δG′(s1) = T. For X ⊆ V, let e(T, X)= |T ∩ δG(X)|.

Lemma 3. There exists T ⊂ δG(s) with |T | = 3 if f(s) = (3, 3, . . . , 3) and
|T | = 2 otherwise such that the T -split G′ of G satisfies (1.72) and (1.73)
where r′(u, v) := r(u, v) if u, v ∈ V and 2 otherwise and V ′ = V ∪ s1.

G′ is r′-edge-connected in V ′, (1.72)

G′ − s is (r′ − (ϕ − 1))-edge-connected in V ′, (1.73)

Proof. Let C be defined as the minimal sets X with hr−ϕ
G−s(X) = 0.

Claim. (1.72) and (1.73) are equivalent to

hr
G(X) ≥ 2e(T,X) − |T | ∀X ⊂ V, (1.74)

e(T,C) ≥ 1 ∀C ∈ C. (1.75)

Proof. (1.72) is satisfied if and only if 0 ≤ hr′

G′(X ′) ∀X ′ ⊂ V ′. Since, for X ′ ⊂

V ′ − s1, h
r′

G′(X ′) = hr
G(X) ≥ 0, (1.72) is equivalent to 0 ≤ hr′

G′(X ′) ∀X ′ ⊂ V ′

containing s1 which is, by hr′

G′(X ′) = hr
G(X)− e(T,X) + (|T | − e(T,X)) with

X = X ′−s1, equivalent to (1.74). (1.73) is satisfied if and only if 0 ≤ hr′−ϕ′

G′−s (X)

∀X ⊂ V ′ not containing s1 which is, by hr′−ϕ′

G′−s (X) = hr−ϕ
G−s(X) + e(T,X)− 1,

equivalent to (1.75). ⊓⊔



32 Zoltán Szigeti

Claim. The following are true for C and for all C ∈ C :

the sets in C are pairwise disjoint and dG(s, C) ≥ ϕ, (1.76)

|C| ∈ {0, 2, 3}, if |C| = 3 then f(s) = (3, 3, ..., 3) and hr
G(C) = 0.(1.77)

Proof. By the skew-submodularity of hr−ϕ
G−s(X), the minimality of the sets in

C, (1.69), (1.70) and (1.68), (1.76) follows. If X ∈ C, then V − X contains a
set Y ∈ C so |C| 6= 1. By (1.76) and di ≥ 2, |C|ϕ ≤

∑
C∈C dG(s, C) ≤ dG(s) =∑p

i=1 di ≤ 3
∑p

i=1⌊
di

2 ⌋ = 3ϕ thus |C| ≤ 3 and if |C| = 3 then each di = 3, that
is, f(s) = (3, 3, . . . , 3) and ∀C ∈ C, dG(s, C) = ϕ, so by (1.70), hr

G(C) = 0.
⊓⊔

By (1.77), either |C| = 3 or |C| ∈ {0, 2}. If |C| = 3, then, by (1.77),
f(s) = (3, 3, . . . , 3). By (1.76), there exists T ⊂ δG(s) with |T | = 3 that
satisfies (1.75). T also satisfies (1.74). Indeed, by (1.77), (1.71) and (1.76),
dG(s,X) ≥ ϕ e(T,X). So, by (1.70), (1.69) and ϕ ≥ 2, hr

G(X) ≥ dG(s,X) −
ϕ ≥ ϕ(e(T,X) − 1) ≥ 2(e(T,X) − 1) ≥ 2e(T,X) − |T |.

From now on |C| ∈ {0, 2}.

Claim. There exists T = {su, sv} that satisfies (1.74) and (1.75).

Proof. If |C| = 0, then (1.75) is redundant, and, by Theorem 4(a), there
is a pair T = {su, sv} that is λ-admissible which is equivalent to (1.74). If
C = {C1, C2}, then, by (1.76), there is a T = {su, sv} satisfying (1.75). T
also satisfies (1.74). Otherwise, there exists u, v ∈ X ⊂ V with hr

G(X) ≤ 1.
If C1 ∪ C2 ⊆ X, then, by (1.70), (1.69), (1.76), hr

G(X) ≥ dG(s,X) − ϕ ≥
dG(s, C1 ∪ C2) − ϕ ≥ 2ϕ − ϕ ≥ 2, contradiction, so wlog. Y := C1 − X 6=
∅. Since C1 ∈ C, hr−ϕ

G−s(Y ) ≥ 1. Let d := dG(s, C1 ∩ X). Then, by (1.70),

hr
G(Y ) = hr−ϕ

G−s(Y )+dG(s, Y )−ϕ ≥ 1+ (dG(s, C1)−d)−ϕ = hr
G(C1)+1−d.

If (1.67) applies for C1 and X, then, by (1.68), hr
G(X) + hr

G(C1) ≥ hr
G(X −

C1) + hr
G(Y ) + 2dG(X,C1) ≥ hr

G(Y ) + 2d ≥ hr
G(C1) + 1 + d ≥ hr

G(C1) + 2,
contradiction. So (1.66) applies for C1 and X and Z := C1 ∪ X 6= V. Since
C = {C1, C2}, h

r−ϕ
G−s(Z) = hr−ϕ

G−s(V − Z) ≥ 1. Then, by (1.70), hr
G(Z) =

hr−ϕ
G−s(Z)+dG(s, Z)−ϕ ≥ 1+(dG(s, C1)+1)−ϕ = hr

G(C1)+2, so, by (1.68),
hr

G(X) + hr
G(C1) ≥ hr

G(X ∩ C1) + hr
G(Z) ≥ hr

G(C1) + 2, a contradiction that
finishes the proof of the claim. ⊓⊔

If f(s) 6= (3, 3, . . . , 3), then, by the above claim, we are done. From now on
f(s) = (3, 3, . . . , 3). Then dG(s) = 3ϕ.

Claim. T can be extended to T ′ ⊂ δG(s) with |T ′| = 3 such that T ′ satisfies
(1.74).

Proof. First suppose Γ (s) = {u, v}. Since dG(s) = 3ϕ and ϕ ≥ 2, wlog.
dG(s, u) ≥ ϕ + 1, thus there exists another copy e′ of su. Then, by (1.70)
and (1.69), T ′ := T ∪ e′ satisfies (1.74). Hence Γ (s) 6= {u, v}. Suppose
indirect that there exists a minimal set M of subsets of V such that for
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every zi ∈ Γ (s) − {u, v} 6= ∅ there exists a set Mi ∈ M violating (1.74) for
T ′ := T ∪ szi. Then, since T satisfies (1.74) and by (1.71), e(T ′,Mi) = 3
so {u, v, zi} ⊆ Mi and hr

G(Mi) ≤ 2. Clearly, |M| ≥ 1. By (1.70), (1.69),
hr

G(Mi) ≤ 2 and ϕ ≥ 2, we have |M| ≥ 2. For Mi,Mj ∈ M,

hr
G(Mi − Mj) = 0, (so, by (1.71), Mi − Mj = zi, ) (1.78)

dG(Mi,Mj) = 2, (1.79)

dG(zi,Mi − zi) ≥ 1. (1.80)

Indeed, 2 ≥ hr
G(Mi), 2 ≥ hr

G(Mj), hr
G(Mi ∩ Mj) ≥ 2e(T,Mi ∩ Mj) − |T | ≥

2 × 2 − 2 = 2 (by (1.74) and {u, v} ⊂ Mi ∩ Mj), hr
G(Mi ∪ Mj) ≥ 3

(by the minimality of M), so (1.66) cannot be satisfied for Mi and Mj .
Then Mi and Mj satisfy (1.67) implying (1.78) and (1.79). Moreover, since
max{R(zi), R(Mi − zi)} ≥ R(Mi) and min{R(zi), R(Mi − zi)} ≥ 2, we have
R(zi) + R(Mi − zi) ≥ R(Mi) + 2, thus 2 ≤ hr

G(zi) + hr
G(Mi ∩ Mj) =

hr
G(zi) + hr

G(Mi − zi) ≤ hr
G(Mi) − 2 + 2dG(zi,Mi − zi) ≤ 2dG(zi,Mi − zi)

implying (1.80).

Case 1 If M = {M1,M2}. Then, by (1.70),(1.78),(1.69) and (1.79), 3ϕ =
dG(s) = dG(s, z1) + dG(s, z2) + dG(s,M1 ∩ M2) = hr

G(z1) − hr−ϕ
G−s(z1) + ϕ +

hr
G(z2)− hr−ϕ

G−s(z2) + ϕ + dG(s,M1 ∩M2) ≤ 2ϕ + 2 ≤ 3ϕ. Thus hr−ϕ
G−s(z1) = 0,

so z1 ∈ C, that is, (1.75) is violated for T , contradiction.

Case 2 If M1,M2,M3 ∈ M. Then, by (1.80), (1.78), (1.79), 1 ≤ dG(M3 −
z3, z3) = dG(M1 ∩ M2, z3) ≤ dG(M1,M2) − dG(M1 ∩ M2, s) ≤ 2 − 2 = 0,
contradiction. The proof of the claim is finished. ⊓⊔

Since T satisfies (1.75), so does T ′ and the proof of Lemma 3 is complete.
⊓⊔

Let G′ be the T -split of G from Lemma 3. Let us denote the new vertex of
G′ of degree |T | by t. Wlog. d1 ≥ d2 ≥ . . . ≥ dp. If dp = |T | then let f ′(s) :=
(d1, . . . , dp−1) otherwise (|T | = 2, d1 ≥ 4) let f ′(s) := (d1 − 2, d2, . . . , dp).
Then (G′, f ′(s)) satisfies (1.72) and (1.73) and z(G′) < z(G), so by induction,
G′ has an r-edge-connected f ′(s)-detachment G′′. Then, in the former case
G′′, in the latter case the graph obtained from G′′ by identifying s1 and t, is
an r-edge-connected f(s)-detachment of G. � � �

1.8.2 A short proof of Theorem 15

I hope that the reader will find interesting the following shortened proof from
[35]. I ask the reader not to be frightened by the technical aspects of the proof
and to make figures to help to understand the proofs. In this section we call
a set X ⊂ V tight (resp. dangerous) if d(X) = k (resp. d(X) ≤ k + 1). We
will abbreviate k-admissible by admissible. In order to have a more convenient
notation, e ∈ Pj will also be denoted by c(e) = j.
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Preliminaries

The following easy observations are from [16].

Proposition 1. (a) {su, sv} is admissible if and only if there is no dangerous
set containing u and v.

(b) For any edge su, there exist at most two dangerous sets M1 and M2

so that u ∈ M1 ∩ M2 and {v : {su, sv} is not admissible} ⊆ M1 ∪ M2.
(c) For a tight set T, {su, sv} is admissible in G if and only if it is admis-

sible in G/T. ⊓⊔

The following proposition contains some technical remarks.

Proposition 2. (a) d(X)− k ≥ 2d(s,X)− d(s) ∀X ⊂ V where equality holds
if and only if d(V − X) = k.

(b)If k ≥ 3 and d(X) ≤ k + 2 then G[X] is connected.
(c) If k is odd, X1,X2,X3 are disjoint tight sets, d(∪3

i=1Xi) = k + 2 and
d(X1,X3) = 0, then d(X1,X2) = d(X2,X3) = k−1

2 .

Proof. (a) By (1.34), d(X)−k = d(V −X)−k +d(s,X)− (d(s)−d(s,X)) ≥
2d(s,X) − d(s).

(b) For a set ∅ 6= Y ⊂ X, by (1.2) and (1.34), (k + 2) + 2d(Y,X − Y ) ≥
d(X) + 2d(Y,X − Y ) = d(Y ) + d(X − Y ) ≥ k + k ≥ k + 3, and (b) follows.

(c) By (1.2) and (1.34), ∀i ∈ {1, 3}, 2k = d(X2) + d(Xi) = d(X2 ∪ Xi) +
2d(X2,Xi) ≥ k + 2d(X2,Xi), thus, by parity, 2d(X2,Xi) ≤ k − 1. Then

3k =
∑3

i=1 d(Xi) = d(∪3
i=1Xi)+

∑
i6=j 2d(Xi,Xj) ≤ (k+2)+2(k−1)+0 = 3k,

and (c) follows. ⊓⊔

We present now some important properties of C4- and C6-obstacles.

Proposition 3. (a) If A is a C4-obstacle, then d(s,Ai) ≥ 1 ∀Ai ∈ A.
(b) If {A1, A2, A3, A4} is a C4-obstacle, then for each set ∅ 6= X ⊆ Ai,

d(V − X) ≥ k + 2 with equality only if d(X) = k.
(c) If {A1, a2, a3, a4} is a C4-obstacle, then for each set X with X∩A1 6= ∅

and a3 ∈ X, d(X) ≥ k + 2.
(d) If {A1, . . . , A6} is a C6-obstacle, then for every allowed pair {sx, sy},

Gx,y contains a C4-obstacle.
(e) If {A1, a2, . . . , a6} is a C6-obstacle and, for a set X 6= V, X ∩A1 6= ∅,

y ∈ X ∩ (a3 ∪ a5) and d(X) ≤ k + 2, then (e1) d(X) = k + 2 and (e2) X ∪A1

is the union of three consecutive sets in A.

Proof. (a) Suppose wlog. d(s,A1) = 0. Then, by (1.27) and (1.26), d(A1, A2)+
d(A1, A4) = d(A1) = k, so, since k is odd, wlog. d(A1, A2) ≥ k+1

2 . Then, by
(1.34), (1.2) and (1.26), k ≤ d(A1 ∪ A2) = d(A1) + d(A2) − 2d(A1, A2) ≤
k + k − (k + 1) = k − 1, contradiction.

(b) Let j := i + 2 if i ≤ 2 and j := i − 2 if i ≥ 3. Then, by (1.34),

Proposition 3(a), (1.28) and (1.29), k+2 ≤ d(X)+2d(s,Aj) = d(X)− (d(s)
2 −

d(s,Aj)) + d(s)
2 + d(s,Aj) = d(V − X) and (b) follows.
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(c) If a2, a4 /∈ X, then, by X ∩ A1 6= ∅, (1.34),(1.26) and (1.27), d(X) =
d(X ∩ A1) + d(a3) = k + k ≥ k + 2. If a2, a4 ∈ X, then, by Proposition 3(b),
d(X) ≥ k + 2. Otherwise, wlog. a2 /∈ X and a4 ∈ X. By Proposition 3(b),
d(X ∪ A1) ≥ k + 2. Then, by (1.2) and (1.34), d(X) ≥ d(X ∩ A1) + d(X ∪
A1) − d(A1) ≥ k + (k + 2) − k = k + 2.

(d) Wlog. x ∈ A1. By (1.2), (1.30), (1.31), d(Ai∪Ai+1) = d(Ai)+d(Ai+1)−
2d(Ai, Ai+1) = k + k − (k − 1) = k + 1. Then, since {sx, sy} is admissible,
y /∈ A2 ∪ A6 by Proposition 1(a). {sx, sy} is allowed so, by (1.33), y /∈ A4.
Thus wlog. y ∈ A3. Then {A1 ∪A2 ∪A3, A4, A5, A6} is a C4-obstacle in Gx,y.

(e) Let X∗ := X ∪ A1. By (1.31), dG−s(X
∗) ≥ k − 1 where equality

holds if and only if X∗ is the union of 2 < l < 6 consecutive sets in A. By
Proposition 2(a), d(s,X) ≤ 4, by (1.32), d(s,A1) = 1 and d(s, V ) = 6 so
X∗ 6= V. By (1.30), d(A1) = k, by X ∩ A1 6= ∅ and (1.34), d(X ∩ A1) ≥ k, so
by (1.2), (k + 2) + k ≥ d(X) + d(A1) ≥ d(X ∩ A1) + d(X∗) ≥ k + d(X∗), so
k + 2 ≥ d(X∗) and if equality holds then d(X) = k + 2. Then, by Proposition
2(b), G[X∗] is connected. Since dG−s(y,A1) = 0, X ′ := X − (y ∪ A1) 6= ∅.
Then k + 2 ≥ d(X∗) = d(s,X∗) + dG−s(X

∗) ≥ d(s, y) + d(s,X ′) + d(s,A1) +
dG−s(X

∗) ≥ 1 + 1 + 1 + (k − 1), so d(X∗) = k + 2 and hence d(X) = k + 2
(implying (e1)), d(s,X ′) = 1 and dG−s(X

∗) = k−1, thus (e2) is satisfied. ⊓⊔

The following lemma will allow us to easily find an allowed pair. The main
difficulty of the proof of Theorem 15 will be to show that there exists an
allowed pair whose splitting off creates no C4- and no C6-obstacle.

Lemma 4. If G contains no C4-obstacle and (1.37) is satisfied then each edge
su belongs to an allowed pair.

Proof. Let S := {sv ∈ E : {su, sv} is admissible}. Suppose su belongs to no
allowed pair. Then every sv ∈ S and su belong to the same Pj . Then, by (1.37),
d(s)
2 ≥ |Pj | ≥ |S| + 1, so |S| ≤ d(s)

2 − 1 and if equality holds then d(s)
2 = |Pj |.

It also follows, by Proposition 1(b), that there are at most two dangerous sets
M1 and M2 so that u ∈ M1 ∩ M2 and {vi : svi ∈ δ(s) − S} ⊆ M1 ∪ M2.
In fact there are exactly two, because, by Proposition 2, d(M1 ∪ M2) − k ≥

2d(s,M1 ∪ M2) − d(s) = 2(d(s) − |S|) − d(s) ≥ d(s) − 2(d(s)
2 − 1) = 2, and if

equality holds then d(V − M1 ∪ M2) = k and |S| = d(s)
2 − 1. The following

claim provides a contradiction.

Claim. {A1 = M1 ∩M2, A2 = M1 −M2, A3 = V −M1 ∪M2, A4 = M2 −M1}
forms a C4-obstacle.

Proof. Note that Ai 6= ∅ 1 ≤ i ≤ 4 and ∪4
i=1Ai = V. By (1.2), (1.34) and

d(M1 ∪ M2) ≥ k + 2, 2(k + 1) ≥ d(M1) + d(M2) = d(A1) + d(M1 ∪ M2) +
2d(M1,M2) ≥ k+(k+2), so d(A1) = k, d(M1∪M2) = k+2 and hence d(A3) =

k and d(s)
2 = |Pj | so (1.28) is satisfied, and d(A2, A4) = d(M1,M2) = 0. By

(1.3) and (1.34), 2(k+1) ≥ d(M1)+d(M2) = d(A2)+d(A4)+2d(A1, A3+s) ≥
k+k+2d(A1, A3)+2d(A1, s) ≥ 2k+0+2, so d(A2) = d(A4) = k, d(A1, A3) = 0
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and d(s,A1) = 1. It also follows that δ(A1 ∪A3)∩ δ(s) = Pj , so (1.26), (1.27)
and (1.29) are satisfied. This completes the proof of the claim and also of
Lemma 4. ⊓⊔

Proof of the necessity of Theorem 15

Suppose there exists a graph that has a complete allowed splitting off

{{ei, fi} : 1 ≤ i ≤ dG(s)
2 } and violates (1.37) or (1.36). Choose such a graph G

with dG(s) minimum. For every 1 ≤ i ≤ dG(s)
2 , 1 ≤ j ≤ r, |Pj ∩ {ei, fi}| ≤ 1 so

(1.37) is satisfied, whence G contains a C4- or a C6-obstacle. By Proposition
3(a) and (1.32), dG(s) 6= 0. Then, either by (1.28) and (1.29) or by Proposition
3(d), Ge1,f1

contains a C4-obstacle, Ge1,f1
has of course a complete allowed

splitting off, and dGe1,f1
(s) < dG(s), contradiction. ⊓⊔

Proof of the sufficiency of Theorem 15

Induction on |V |. By Proposition 1(c), we may assume that

every tight set is a singleton. (1.81)

Wlog. |P1| is maximum. By Lemma 4, there is an allowed pair {e = sx, f = sy}
with sx ∈ P1. If, after splitting off this pair, we get stuck by a C6-obstacle,
then we can get rid of it by the following lemma.

Lemma 5. Suppose that G′ := Ge,f contains a C6-obstacle A = {A1, . . . , A6}.
Then there exists an edge f ′ = sy′ such that {e, f ′} is allowed in G and
G′′ := Ge,f ′ satisfies (1.34), (1.37) and (1.36).

Proof. The suitable y′ will be chosen as follows: Wlog. x ∈ A1. Then, by
(1.30) and (1.81), Aj = aj ∀ 2 ≤ j ≤ 6. By (1.33), c(sa3) 6= c(sa5) so either
c(sa3) 6= 1 in which case let y′ := a3 or c(sa5) 6= 1 and then let y′ := a5.
We show that y′ will do. For each set X with x, y′ ∈ X 6= V, by Proposition
3(e), k + 2 ≤ dG′(X) ≤ dG(X), so by Proposition 1(a), {e, f ′} is admissible
in G, thus G′′ satisfies (1.34). Since c(sx) = 1 6= c(sy′), G′′ satisfies (1.37)
and {e, f ′} is allowed in G. It remains to show that G′′ satisfies (1.36). Since
xy ∈ E(G′), either Case a: y ∈ A1 or Case b: wlog. y ∈ A2. In both cases we
suppose indirect that G′′ contains a C4- (Case 1) or a C6-obstacle (Case 2)
A′.

Case a: Wlog. y′ = a5 and x ∈ A′
1. Suppose y′ /∈ A′

1. By (1.30), k + 2 =
dG′(A1) + 2 = dG(A1). By (1.26) or (1.30), dG(A′

1) = k and then, by (1.81),
|A′

i| = 1 ∀A′
i ∈ A′. Hence |V | = 4 or 6. But |V | ≥ 6 because G′ contains

the C6-obstacle A, so |V | = 6. Thus A′
1 = A1 and hence k = dG′′(A′

1) =
dG′′(A1) = dG(A1), contradiction. Thus y′ ∈ A′

1 and dG(A′
1) = k + 2. Since

dG′(A′
1) ≤ dG(A′

1), A′
1 ∪ A1 is the union of three consecutive sets in A by

Proposition 3(e).
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Case a1: Then 3 = |V − (A1 ∪ A′
1)| ≤ |V − A′

1| = 3 by (1.81) so A1 ⊂ A′
1

thus, by (1.31), wlog. A′
j = aj 2 ≤ j ≤ 4. By (1.33) for A, there is a w ∈ A1

with c(sw) = c(sa4) but w ∈ A′
1 and a4 ∈ A′

4, contradiction by (1.29) for A′.

Case a2: Then a6 ∈ A′
1. Wlog. A′

2 = a4 and A′
3 = a3. Then, by (1.33) for A

and A′, c(sa3) = c(sa6) 6= c(sa3), contradiction, and we are done in Case a.

Case b: Then, by (1.30) and (1.81), A1 = a1 so |V | = 6.

Case b1: Since dG′′(s, y′) = 0, wlog. x, y′ ∈ A′
1 and dG(A′

1) = k + 2. Since
dG′(A′

1) ≤ dG(A′
1), dG′(A′

1) = k + 2 and A′
1 ∪A1 is the union of three consec-

utive sets in A by Proposition 3(e). Then dG′(A′
1) = dG(A′

1) so y′ = a5. Thus
A′

1 = {a5, a6, a1}. Wlog. A′
j = aj 2 ≤ j ≤ 4 by (1.31) for A and (1.27) for A′.

By (1.33) for A, c(sa1) = c(sa4), contradiction by (1.29) for A′.

Case b2: Note that, by (1.32), dG(s, a1) = dG(s, a2) = 2 and dG(s, ah) =
1 (3 ≤ h ≤ 6). Then dG′′(s, a2) = 2 that is, by (1.32), a contradiction, and we
are done in Case b, and the proof of Lemma 5 is complete. ⊓⊔

The following lemma allows us to get rid of a C4-obstacle if during the
splitting off we get stuck with one.

Lemma 6. Suppose that G′ := Ge,f contains a C4-obstacle A := {A1, A2, A3,
A4}. Then there exists an allowed pair e′ = sx′, f ′ = sy′ in G such that
G′′ := Ge′,f ′ satisfies (1.34), (1.37) and (1.36).

Proof. Wlog. x ∈ A1. Since xy ∈ E(G′), either Case a: wlog. y ∈ A2 or Case
b: y ∈ A1. By (1.26) and (1.81), Aj = aj ∀ 2 ≤ j ≤ 4, in Case a: A1 = a1 so
|V | = 4 and in Case b: dG(A1) = k + 2.

Case a: We chose e′ and f ′ as follows. If there exists an edge g = sa3 with
c(g) 6= c(e) then let e′ := e, f ′ := g. Otherwise, since A is not a C4-obstacle in
G, there is an edge h = sa1 with c(h) 6= c(e) and then let e′ := sa3, f

′ := h. We
show that this pair will do. Note that {x′, y′} = {a1, a3}. For each set X with
x′, y′ ∈ X 6= V, either X = {x′, y′} and then, by (1.26) and (1.27), dG(X) =
dG(a1) + dG(a3) = k + k ≥ k + 2 or, by X 6= V, ∃i ∈ {2, 4} X = {a1, a3, ai}
and then, by Proposition 3(b), k + 2 ≤ dG′(X) ≤ dG(X). In both cases,
by Proposition 1(a), {e′, f ′} is admissible in G, thus G′′ satisfies (1.34). Since
c(e′) = c(e), G′′ satisfies (1.37) and {e′, f ′} is allowed in G. It remains to show
that G′′ satisfies (1.36). Suppose not. Then, since |V | = 4, G′′ contains a C4-
obstacle A′ := {A′

1, A
′
2, A

′
3, A

′
4}. Since a1a3 ∈ E(G′′), wlog. A′

1 ∪A′
2 = a1 ∪a3

and A′
3∪A′

4 = a2∪a4. By Proposition 3(a), dG′′(s,A′
i) ≥ 1 so dG(s,A′

i) ≥ 2 i ∈
{1, 2}. By (1.28) and (1.29) for A in G′, there exist 1 ≤ l ≤ r and j ∈ {1, 2}
such that for every edge sd ∈ E(G′) with d ∈ Aj ∪ Aj+2, c(sd) = l. Then
there exist sd1, sd2 ∈ E(G′′) with d1 ∈ Aj , d2 ∈ Aj+2 and c(sd1) = c(sd2) = l.
This contradicts (1.29) for A′.

Case b: Either we reduce this case to a case already seen or we show that
the following edge pair e′, f ′ will do. Let g := sa3. If c(g) 6= c(e), then let
e′ := e and f ′ := g, otherwise, let e′ := g and f ′ := f. Since c(e′) = c(e),
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G′′ satisfies (1.37). By Propositions 1(a) and 3(c), {e′, f ′} is admissible in
G, so allowed in G and (1.34) is satisfied. If G′′ satisfies (1.36), then we are
done. Otherwise, either G′′ contains a C6-obstacle, and then, by Lemma 5,
we are done, or G′′ contains a C4-obstacle A′ := {A′

1, A
′
2, A

′
3, A

′
4}. Wlog.

x′, y′ ∈ A′
1, otherwise restarting the proof by e′ and f ′ we are in Case a.

Then, by (1.26) and (1.81), |A′
j | = 1 ∀ 2 ≤ j ≤ 4 and dG(A′

1) = k + 2. By
Proposition 2(b), G[A′

1] is connected, so, by (1.27), wlog. V − a4 ⊆ A′
1 ∪ A1.

First suppose that A′
1 ∪ A1 = V. Then, by Propositions 3(b) applied for G′,

dG′(A′
1) = k+2 and k = dG′(V −A′

1). The common edge of {e, f} and {e′, f ′}
enters A1∩A′

1, so dG′(V −A′
1) = dG(V −A′

1) thus, by (1.81), 1 = |V −A′
1|(= 3),

contradiction, so A′
1 ∪A1 = V − a4. Then, by Proposition 3(b) again applied

for G′, dG′(A′
1∪A1) ≥ k+2. Then, by (1.2) and (1.34), dG(A′

1∩A1) = k thus,
by (1.81), |A′

1 ∩ A1| = 1, say A′
1 ∩ A1 = a1. Then it follows that |V | = 6, say

V = {a1, a2, . . . , a6}. Note that dG(ai) = k 1 ≤ i ≤ 6. By Proposition 3(a)
for A and for A′, 1 ≤ dG(sai) 1 ≤ i ≤ 6 so 6 ≤ dG(s). The following claim
provides a contradiction.

Claim. {a1, a2, . . . , a6} forms a C6-obstacle in G.

Proof. We start with some structural observations.

Proposition 4. (a) A1 = {a1, a5, a6}, Ai = ai 2 ≤ i ≤ 4, A′
1 = {a1, a2, a3},

wlog. A′
2 = a6, A

′
3 = a5, A

′
4 = a4, (b) dG(a1, a2) = dG(a2, a3) = dG(a1, a6) =

dG(a5, a6) = k−1
2 , (c) {x, y} = {a1, a5}.

Proof. We know that A′
1 = {a1, a2, a3} and A1 = {a1, a5, a6}. Then, by (1.27)

for A, dG(a1, a3) = 0 so, by Proposition 2(c), dG(a1, a2) = dG(a2, a3) = k−1
2 .

Wlog. A′
2 = a6. Suppose that A′

4 = a5. Then, by (1.27) for A′, dG(a5, a6) = 0
so, by Proposition 2(c), dG(a1, a5) = dG(a1, a6) = k−1

2 . Then k = dG(a1) ≥

dG(a1, a2)+dG(a1, a5)+dG(a1, a6)+dG(a1, s) ≥ 3k−1
2 +1, that is k ≤ 1, con-

tradiction. Thus A′
4 = a4 and A′

3 = a5, that is, (a) is satisfied. Then, by (1.27)
for A′, dG(a1, a5) = 0 so, by Proposition 2(c), dG(a1, a6) = dG(a5, a6) = k−1

2
and (b) is satisfied. By definition, {x, y} ∩ {x′, y′} = a1, so a1 ∈ {x, y}.
Suppose a5 /∈ {x, y}. Then {x, y} = {a1, a6}. By (1.2), (1.30) and (b),
dG({a1, a6}) = dG(a1) + dG(a6) − 2dG(a1, a6) = k + k − (k − 1) = k + 1,
hence, by Proposition 1(a), {sx, sy} is not admissible in G, contradiction,
thus (c) is satisfied. ⊓⊔

By (1.29) for A′, c(sa2) 6= c(sa4) so δG′(A1 ∪ A3) ∩ δG′(s) = P ′
l in (1.29)

for A for some l with |Pl| ≥ |P ′
l | = dG′ (s)

2 = dG(s)
2 − 1. By (1.29) for A,

c(sa6) 6= c(sa4) so δG′′(A′
1 ∪ A′

3) ∩ δG′′(s) = Pl′ in (1.29) for A′ for some l′

with |Pl′ | ≥ |P ′
l′ | = dG′′ (s)

2 = dG(s)
2 − 1. In particular, c(sa2) = c(sa5) = l′.

By (1.29) for A, l = c(sa3) 6= c(sa2) = l′ thus, by Proposition 4(c), e = e′ =
sa1, f = sa5, f

′ = sa3. Since {e, f} and {e′, f ′} are allowed, l 6= 1 6= l′. Then,

by the maximality of P1, |P1| ≥ |Pl| ≥
dG(s)

2 − 1. dG(s) ≥ |P1|+ |Pl|+ |Pl′ | ≥

3(dG(s)
2 − 1), that is, dG(s) ≤ 6. Then dG(s) = 6 and |P1| = |Pl| = |Pl′ | = 2,
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namely P1 = {sa1, sa4}, Pl = {sa3, sa6}, Pl′ = {sa2, sa5}, so (1.32) and (1.33)
are satisfied. We have already seen that (1.30) is satisfied. By (1.26) and (1.27)
for A′ and for A, Proposition 4(b) and (1.32), dG(a5, a4) = k−1

2 = dG(a3, a4).
Then, by Proposition 4(b), (1.31) is satisfied. This completes the proof of the
claim and also of Lemma 6. ⊓⊔

By Lemmas 4, there exists an allowed pair, and then, by Lemmas 5 and
6, there exists one that does not create a C4- or C6-obstacle, so by induction,
there exists a complete allowed splitting off and Theorem 15 is proved. � � �
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